Physico-chemical methods for studying amyloid-β aggregation

  • S. P. Radko
  • S. A. Khmeleva
  • E. V. Suprun
  • S. A. Kozin
  • N. V. Bodoev
  • A. A. Makarov
  • A. I. Archakov
  • V. V. Shumyantseva


Alzheimer’s disease is the most prevalent neurodegenerative pathology. According to the amyloid cascade hypothesis, transition of the amyloid-β peptide (Aβ) from the monomeric form to the aggregated state is a key event in pathogenesis of the Alzheimer’s disease. The mechanism of Aβ aggregation is intensively studied in vitro, by means of synthetic peptides and various physico-chemical methods allowing evaluation of size, molecular structure, and morphology of the formed aggregates. The review considers both the wellknown and recently introduced physico-chemical methods for analysis of Aβ aggregation, including microscopy, optical and fluorescent methods, electron paramagnetic resonance, electrochemical and electrophoretic methods, gel-filtration, and mass spectrometric methods. Advantages and disadvantages of these methods are considered. Special attention is paid to the unique possibility of simultaneous analysis of both Aβ monomers and its oligomers as well as large aggregates by means of atomic force microscopy or fluorescence correlation spectroscopy. The high detection sensitivity of the latter method provides opportunity for investigating the aggregation process in Aβ solutions of low peptide concentrations. Among mass spectrometric methods, the ion mobility mass spectrometry is considered as a method enabling to obtain information about both the spectrum of Aβ oligomers and their structure. Simultaneous employment of several methods providing complementary data about Aβ aggregates is the best experimental approach for studying the process of Aβ aggregation in vitro.


Alzheimer’s disease amyloid-β aggregation analytical methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belousov, Yu.B., Zyryanov, S.K., Belousov, D.Yu., and Beketov, A.S., Kachestvennaya Klinicheskaya Praktika. Bolezn’ Altzgeimera (Special issue), 2009, pp. 3–28.Google Scholar
  2. 2.
    Shelkovnikova, T.A., Kulikova, A.A., Tsvetkov, F.O., Peters, O., Bachurin, S.O., Buchman, V.L., and Ninkina, N.N., Mol. Biol. (Moscow), 2012, vol. 46, pp. 402–415.CrossRefGoogle Scholar
  3. 3.
    Haass, C. and Selkoe, D.J., Nat. Rev. Mol. Cell. Biol., 2007, vol. 8, pp. 101–112. doi:  10.1038/nrm2101 CrossRefGoogle Scholar
  4. 4.
    Vigo-Pelfrey, C., Lee, D., Keim, P., Lieberburg, I., and Schenk, D.B., J. Neurochem., 1993, vol. 61, pp. 1965–1968.CrossRefGoogle Scholar
  5. 5.
    Hardy, J., Curr. Alzheimer Res., 2006, vol. 3, pp. 71–73. doi:  10.2174/156720506775697098 CrossRefGoogle Scholar
  6. 6.
    Kudinova, N.V., Kudinov, A.R., and Berezov, T.T., Biomed. Khim., 2007, vol. 53, pp. 119–127.Google Scholar
  7. 7.
    Maltsev, A.V. and Galzitskaya, O.V., Biomed. Khim., 2010, vol. 56, pp. 624–638.CrossRefGoogle Scholar
  8. 8.
    Bitan, G., Kirkitadze, M.D., Lomakin, A., Vollers, S.S., Benedek, G.B., and Teplow, D.B., Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 330–335. doi:  10.1073/pnas.222681699 CrossRefGoogle Scholar
  9. 9.
    Jan, A., Hartley, D.M., and Lashuel, H.A., Nat. Protoc., 2010, vol. 5, pp. 1186–1209. doi:  10.1038/nprot.2010.72 CrossRefGoogle Scholar
  10. 10.
    Faller, P., Hureau, C., and Berthoumieu, O., Inorg. Chem., 2013, vol. 52, pp. 12193–12206. doi:  10.1021/ic4003059 CrossRefGoogle Scholar
  11. 11.
    Tsvetkov, P.O., Kulikova, A.A., Golovin, A.V., Tkachev, Y.V., Archakov, A.I., Kozin S.A., and Makarov, A. A., Biophys. J., 2010, vol. 99, pp. L84–86. doi:  10.1016/j.bpj.2010.09.015 CrossRefGoogle Scholar
  12. 12.
    Zirah, S., Kozin, S.A., Mazur, A.K., Blond, A., Cheminant, M., Segalas-Milazzo, I., Debey, P., and Rebuffat, S., J. Biol. Chem., 2006, vol. 281, pp. 2151–2161. doi:  10.1074/jbc.M504454200 CrossRefGoogle Scholar
  13. 13.
    Kozin, S.A., Zirah, S., Rebuffat, S., Hoa, G.H., and Debey, P., Biochem. Biophys. Res. Commun., 2001, vol. 285, pp. 959–964. doi:  10.1006/bbrc.2001.5284 CrossRefGoogle Scholar
  14. 14.
    Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., and Teplow, D. B., J. Biol. Chem., 1997, vol. 272, pp. 22364–22372. doi:  10.1074/jbc.272.35.22364 CrossRefGoogle Scholar
  15. 15.
    Goldsbury, C. S., Wirtz, S., Muller, S. A., Sunderji, S., Wicki, P., Aebi, U., and Frey, P. J. Struct. Biol., 2000, vol. 130, pp. 217–231. doi:  10.1006/jsbi.2000.4259 CrossRefGoogle Scholar
  16. 16.
    Nybo, M., Svehag, S.E., and Holm Nielsen, E., Scand. J. Immunol., 1999, vol. 49, pp. 219–223. doi:  10.1046/j.1365-3083.1999.00526.x CrossRefGoogle Scholar
  17. 17.
    Lashuel, H.A., Hartley, D.M., Petre, B.M., Wall, J.S., Simon, M.N., Walz, T., and Lansbury, P.T., ffixJr., J. Mol. Biol., 2003, vol. 332, pp. 795–808. doi:  10.1016/S0022-2836(03)00927-6 CrossRefGoogle Scholar
  18. 18.
    Antzutkin, O. N., Magn. Reson. Chem., 2004, vol. 42, pp. 231–246. doi:  10.1002/mrc.1341 CrossRefGoogle Scholar
  19. 19.
    Matsumura, S., Shinoda, K., Yamada, M., Yokojima, S., Inoue, M., Ohnishi, T., Shimada, T., Kikuchi, K., Masui, D., Hashimoto, S., Sato, M., Ito, A., Akioka, M., Takagi, S., Nakamura, Y., Nemoto, K., Hasegawa, Y., Takamoto, H., Inoue, H., Nakamura, S., Nabeshima, Y., Teplow, D. B., Kinjo, M., and Hoshi, M., J. Biol. Chem., 2011, vol. 286, pp. 11555–11562. doi:  10.1074/jbc.M110.181313 CrossRefGoogle Scholar
  20. 20.
    Wu, W.H., Liu, Q., Sun, X., Yu, J.S., Zhao, D.S., Yu, Y.P., Luo, J.J., Hu, J., Yu, Z.W., Zhao, Y.F., and Li, Y.M., Biochem. Biophys. Res. Commun., 2013, vol. 439, pp. 321–326. doi:  10.1016/j.bbrc.2013.08.088 CrossRefGoogle Scholar
  21. 21.
    Poduslo, J.F. and Howell, K.G., J. Neurosci. Res., 2014, vol. 93, pp. 410–423. doi:  10.1002/jnr.23507 CrossRefGoogle Scholar
  22. 22.
    Jun, S., Gillespie, J.R., Shin, B.K., and Saxena, S., Biochemistry, 2009, vol. 48, pp. 10724–10732. doi:  10.1021/bi9012935 CrossRefGoogle Scholar
  23. 23.
    Feng, Y., Yang, S.G., Du, X.T., Zhang, X., Sun, X.X., Zhao, M., Sun, G.Y., and Liu, R.T., Biochem. Biophys. Res. Commun., 2009, vol. 390, pp. 1250–1254. doi:  10.1016/j.bbrc.2009.10.130 CrossRefGoogle Scholar
  24. 24.
    Flashner, E., Raviv, U., and Friedler, A., Biochem. Biophys. Res. Commun., 2011, vol. 407, pp. 13–17. doi:  10.1016/j.bbrc.2011.02.067 CrossRefGoogle Scholar
  25. 25.
    Ushikubo, H., Tanimoto, Y., Abe, K., Asakawa, T., Kan, T., and Akaishi, T., Biol. Pharm. Bull., 2014, vol. 37, pp. 748–754. doi:  10.1248/bpb.b13-00709 CrossRefGoogle Scholar
  26. 26.
    Catto, M., Arnesano, F., Palazzo, G., De Stradis, A., Calo, V., Losacco, M., Purgatorio, R., and Campagna, F., Arch. Biochem. Biophys., 2014, vol. 560, pp. 73–82. doi:  10.1016/ CrossRefGoogle Scholar
  27. 27.
    Yagi, H., Hasegawa, K., Yoshimura, Y., and Goto, Y., Biochim. Biophys. Acta, 2013, vol. 1834, pp. 2480–2485. doi:  10.1016/j.bbapap.2013.08.013 CrossRefGoogle Scholar
  28. 28.
    Bruggink, K. A., Muller, M., Kuiperij, H. B., and Verbeek, M.M., J. Alzheimer’s Dis., 2012, vol. 28, pp. 735–758. doi:  10.3233/JAD-2011-111421 Google Scholar
  29. 29.
    Creasey, R.G., Gibson, C.T., and Voelcker, N.H., Curr. Protein Pept. Sci., 2012, vol. 13, pp. 232–257. doi:  10.2174/138920312800785058 CrossRefGoogle Scholar
  30. 30.
    Harper, J.D., Wong, S.S., Lieber, C.M., and Lansbury, P.T., ffixJr., Biochemistry, 1999, vol. 38, pp. 8972–8980. doi:  10.1021/bi9904149 CrossRefGoogle Scholar
  31. 31.
    Nichols, M.R., Moss, M.A., Reed, D.K., Lin, W.L., Mukhopadhyay, R., Hoh, J. H., and Rosenberry, T. L., Biochemistry, 2002, vol. 41, pp. 6115–6127. doi:  10.1021/bi015985r CrossRefGoogle Scholar
  32. 32.
    Chromy, B.A., Nowak, R.J., Lambert, M.P., Viola, K.L., Chang, L., Velasco, P.T., Jones, B.W., Fernandez, S.J., Lacor, P.N., Horowitz, P., Finch, C.E., Krafft, G.A., and Klein, W.L., Biochemistry, 2003, vol. 42, pp. 12749–12760. doi:  10.1021/bi030029q CrossRefGoogle Scholar
  33. 33.
    Arimon, M., Diez-Perez, I., Kogan, M.J., Durany, N., Giralt, E., Sanz, F., and Fernandez-Busquets, X., FASEB J., 2005, vol. 19, pp. 1344–1346. doi:  10.1096/fj.04-3137fje Google Scholar
  34. 34.
    Goldsbury, C., Aebi, U., and Frey, P., Trends Mol. Med., 2001, vol. 7, p. 582. doi:  10.1016/S14714914(01)02180-3 CrossRefGoogle Scholar
  35. 35.
    Mastrangelo, I.A., Ahmed, M., Sato, T., Liu, W., Wang, C., Hough, P., and Smith, S.O., J. Mol. Biol., 2006, vol. 358, pp. 106–119. doi:  10.1016/j.jmb.2006.01.042 CrossRefGoogle Scholar
  36. 36.
    Bin, Y., Li, X., He, Y., Chen, S., and Xiang, J., Acta. Biochim. Biophys. Sin. (Shanghai), 2013, vol. 45, pp. 570–577. doi:  10.1093/abbs/gmt044 CrossRefGoogle Scholar
  37. 37.
    Lv, Z., Condron, M.M., Teplow, D.B., and Lyubchenko, Y.L., J. Neuroimmune Pharmacol., 2013, vol. 8, pp. 262–273. doi:  10.1007/s11481-0129416-6 CrossRefGoogle Scholar
  38. 38.
    Wang, P., Liao, W., Fang, J., Liu, Q., Yao, J., Hu, M., and Ding, K., Carbohydr. Polym., 2014, vol. 110, pp. 142–147. doi:  10.1016/j.carbpol.2014.03.060 CrossRefGoogle Scholar
  39. 39.
    Banerjee, R., Spectrochim. Acta A. Mol. Biomol. Spectrosc., 2014, vol. 117, pp. 798–800. doi:  10.1016/j.saa.2013.09.064 CrossRefGoogle Scholar
  40. 40.
    Norlin, N., Hellberg, M., Filippov, A., Sousa, A.A., Grobner, G., Leapman, R.D., Almqvist, N., and Antzutkin, O.N., J. Struct. Biol., 2012, vol. 180, pp. 174–189. doi:  10.1016/j.jsb.2012.06.010 CrossRefGoogle Scholar
  41. 41.
    Vestergaard, M., Hamada, T., Saito, M., Yajima, Y., Kudou, M., Tamiya, E., and Takagi, M., Biochem. Biophys. Res. Commun., 2008, vol. 377, pp. 725–728. doi:  10.1016/j.bbrc.2008.10.072 CrossRefGoogle Scholar
  42. 42.
    Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H., Nat. Mater., 2005, vol. 4, pp. 435–446. doi:  10.1038/nmat1390 CrossRefGoogle Scholar
  43. 43.
    Tokuraku, K., Marquardt, M., and Ikezu, T., PLoS One, 2009, vol. 4, e8492. doi:  10.1371/journal.pone.0008492 CrossRefGoogle Scholar
  44. 44.
    Thakur, G., Micic, M., Yang, Y., Li, W., Movia, D., Giordani, S., Zhang, H., and Leblanc, R.M., Int. J. Alzheimer’s Dis., 2011, vol. 2011, 502386. doi:  10.4061/2011/502386 Google Scholar
  45. 45.
    Ishigaki, Y., Tanaka, H., Akama, H., Ogara, T., Uwai, K., and Tokuraku, K., PLoS One, 2013, vol. 8, e72992. doi:  10.1371/journal.pone.0072992 CrossRefGoogle Scholar
  46. 46.
    Chan, H.M., Xiao, L., Yeung, K.M., Ho, S.L., Zhao, D., Chan, W.H., and Li H.W., Biomaterials, 2012, vol. 33, pp. 4443–4450. doi:  10.1016/j.biomaterials.2012.03.024 CrossRefGoogle Scholar
  47. 47.
    Greenfield, N.J., Nat. Protoc., 2006, vol. 1, pp. 2876–2890. doi:  10.1038/nprot.2006.202 CrossRefGoogle Scholar
  48. 48.
    Barrow, C.J., Yasuda, A., Kenny, P.T., and Zagorski, M.G., J. Mol. Biol., 1992, vol. 225, pp. 1075–1093.CrossRefGoogle Scholar
  49. 49.
    Tomski, S.J. and Murphy, R.M., Arch. Biochem. Biophys., 1992, vol. 294, pp. 630–638.CrossRefGoogle Scholar
  50. 50.
    Baumketner, A., Bernstein, S.L., Wyttenbach, T., Bitan, G., Teplow, D.B., Bowers, M.T., and Shea, J.E., Protein Sci., 2006, vol. 15, pp. 420–428. doi:  10.1110/ps.051762406 CrossRefGoogle Scholar
  51. 51.
    Bartolini, M., Bertucci, C., Bolognesi, M.L., Cavalli, A., Melchiorre, C., and Andrisano, V., Chembiochem., 2007, vol. 8, pp. 2152–2161. doi:  10.1002/cbic.200700427 CrossRefGoogle Scholar
  52. 52.
    Du, X., Li, H., Wang, Z., Qiu, S., Liu, Q., and Ni, J., Metallomics, 2013, vol. 5, pp. 861–870. doi:  10.1039/c3mt20282h CrossRefGoogle Scholar
  53. 53.
    Chen, Q., Yang, L., Zheng, C., Zheng, W., Zhang, J., Zhou, Y., and Liu, J., Nanoscale, 2014, vol. 6, pp. 6886–6897. doi:  10.1039/c3nr05906e CrossRefGoogle Scholar
  54. 54.
    O’Nuallain, B., Freir, D.B., Nicoll, A.J., Risse, E., Ferguson, N., Herron, C.E., Collinge, J., and Walsh, D.M., J. Neurosci., 2010, vol. 30, pp. 14411–14419. doi:  10.1523/JNEUROSCI.3537-10.2010 CrossRefGoogle Scholar
  55. 55.
    Stroud, J.C., Liu, C., Teng, P.K., and Eisenberg, D., Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 7717–7722. doi:  10.1073/pnas.1203193109 CrossRefGoogle Scholar
  56. 56.
    Huang, T.H., Yang, D.S., Plaskos, N.P., Go, S., Yip, C.M., Fraser, P.E., and Chakrabartty, A., J. Mol. Biol., 2000, vol. 297, pp. 73–87. doi:  10.1006/jmbi.2000.3559 CrossRefGoogle Scholar
  57. 57.
    Ono, K., Condron, M. M., and Teplow, D.B., Proc. Natl. Acad. Sci. USA, 2009, vol. 106, 14745–14750. doi:  10.1073/pnas.0905127106
  58. 58.
    Kirkitadze, M.D., Condron, M.M., and Teplow, D.B., J. Mol. Biol., 2001, vol. 312, pp. 1103–1119. doi:  10.1006/jmbi.2001.4970 CrossRefGoogle Scholar
  59. 59.
    Sarver, R.W., ffixJr. and Krueger, W.C. Anal. Biochem., 1991, vol. 194, pp. 89–100.CrossRefGoogle Scholar
  60. 60.
    Fraser, P.E., Nguyen, J.T., Surewicz, W.K., and Kirschner, D.A., Biophys. J., 1991, vol. 60, pp. 1190–1201.CrossRefGoogle Scholar
  61. 61.
    Benseny-Cases, N., Cocera, M., and Cladera, J., Biochem. Biophys. Res. Commun., 2007, vol. 361, pp. 916–921. doi:  10.1016/j.bbrc.2007.07.082 CrossRefGoogle Scholar
  62. 62.
    Sarroukh, R., Cerf, E., Derclaye, S., Dufrene, Y. F., Goormaghtigh, E., Ruysschaert, J. M., and Raussens, V., Cell. Mol. Life Sci., 2011, vol. 68, pp. 1429–1438. doi:  10.1007/s00018-010-0529-x CrossRefGoogle Scholar
  63. 63.
    Bolognesi, B., Cohen, S.I., Aran Terol, P., Esbjorner, E.K., Giorgetti, S., Mossuto, M.F., Natalello, A., Brorsson, A.C., Knowles, T.P., Dobson, C.M., and Luheshi, L.M., ACS Chem. Biol., 2014, vol. 9, pp. 378–382. doi:  10.1021/cb400616y CrossRefGoogle Scholar
  64. 64.
    Wood, S.J., Maleeff, B., Hart, T., and Wetzel, R., J. Mol. Biol., 1996, vol. 256, pp. 870–877.CrossRefGoogle Scholar
  65. 65.
    Evans, K.C., Berger, E.P., Cho, C.G., Weisgraber, K.H., and Lansbury, P.T., ffixJr., Proc. Natl. Acad. Sci. USA 1995, vol., 92, pp. 763–767.CrossRefGoogle Scholar
  66. 66.
    Cook, N.P. and Marti, A.A., ACS Chem. Neurosci., 2012, vol. 3, pp. 896–899. doi:  10.1021/cn300135n CrossRefGoogle Scholar
  67. 67.
    Zhu, L., Han, Y., He, C., Huang, X., and Wang, Y., J. Phys. Chem. B, 2014, vol. 118, pp. 9298–9305. doi:  10.1021/jp503282m CrossRefGoogle Scholar
  68. 68.
    Thunecke, M., Lobbia, A., Kosciessa, U., Dyrks, T., Oakley, A.E., Turner, J., Saenger, W., and Georgalis, Y., J. Pept. Res., 1998, vol. 52, pp. 509–517.CrossRefGoogle Scholar
  69. 69.
    Picone, P., Carrotta, R., Montana, G., Nobile, M.R., San Biagio, P.L., and Di Carlo, M., Biophys. J., 2009, vol. 96, pp. 4200–4211. doi:  10.1016/j.bpj.2008.11.056 CrossRefGoogle Scholar
  70. 70.
    Hepler, R.W., Grimm, K.M., Nahas, D.D., Breese, R., Dodson, E.C., Acton, P., Keller, P.M., Yeager, M., Wang, H., Shughrue, P., Kinney, G., and Joyce, J.G., Biochemistry, 2006, vol. 45, pp. 15157–15167. doi:  10.1021/bi061850f CrossRefGoogle Scholar
  71. 71.
    Rambaldi, D.C., Zattoni, A., Reschiglian, P., Colombo, R., and De Lorenzi, E., Anal. Bioanal. Chem., 2009, vol. 394, pp. 2145–2149. doi:  10.1007/s00216-009-2899-1 CrossRefGoogle Scholar
  72. 72.
    Lomakin, A., Teplow, D.B., and Benedek, G.B., Methods Mol. Biol., 2005, vol. 299, pp. 153–174. doi:  10.1385/1-59259-874-9:153 Google Scholar
  73. 73.
    Lomakin, A., Chung, D.S., Benedek, G.B., Kirschner, D.A., and Teplow, D.B., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 1125–1129.CrossRefGoogle Scholar
  74. 74.
    Murphy, R.M., and Pallitto, M.M., J. Struct. Biol., 2000, vol. 130, pp. 109–122. doi:  10.1006/jsbi.2000.4253 CrossRefGoogle Scholar
  75. 75.
    Campagna, F., Catto, M., Purgatorio, R., Altomare, C.D., Carotti, A., De Stradis, A., and Palazzo, G., Eur. J. Med. Chem., 2011, vol. 46, pp. 275–284. doi:  10.1016/j.ejmech.2010.11.015 CrossRefGoogle Scholar
  76. 76.
    Gorman, P.M., Yip, C.M., Fraser, P.E., and Chakrabartty, A., J. Mol. Biol., 2003, vol. 325, pp. 743–757. doi:  10.1016/S0022-2836(02)01279-2 CrossRefGoogle Scholar
  77. 77.
    Churches, Q.I., Caine, J., Cavanagh, K., Epa, V.C., Waddington, L., Tranberg. C.E., Meyer, A.G., Varghese, J.N., Streltsov, V., and Duggan, P.J., Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 3108–3112. doi:  10.1016/j.bmcl.2014.05.008 CrossRefGoogle Scholar
  78. 78.
    Bolognin, S., Messori, L., Drago, D., Gabbiani, C., Cendron, L., and Zatta, P., Int. J. Biochem. Cell. Biol., 2011, vol. 43, pp. 877–885. doi:  10.1016/j.biocel.2011.02.009 CrossRefGoogle Scholar
  79. 79.
    Friedman, O.M., Matsudaira, P., Reis, A.H., ffixJr., Simister, N., Correia, I., Kew, D., Wei, J.Y., and Pochapsky, T., J. Alzheimer’s Dis., 2007, vol. 11, pp. 291–300.Google Scholar
  80. 80.
    Lakatos, A., Zsigo, E., Hollender, D., Nagy, N.V., Fulop, L., Simon, D., Bozso, Z., and Kiss, T., Dalton Trans., 2010, vol. 39, pp. 1302–1315. doi:  10.1039/b916366b CrossRefGoogle Scholar
  81. 81.
    Cizas, P., Budvytyte, R., Morkuniene, R., Moldovan, R., Broccio, M., Losche, M., Niaura, G., Valincius, G., and Borutaite, V., Arch. Biochem. Biophys., 2010, vol. 496, pp. 84–92. doi:  10.1016/ CrossRefGoogle Scholar
  82. 82.
    Li, H., Monien, B.H., Lomakin, A., Zemel, R., Fradinger, E.A., Tan, M., Spring, S.M., Urbanc, B., Xie, C.W., Benedek, G.B., and Bitan, G., Biochemistry, 2010, vol. 49, pp. 6358–6364. doi:  10.1021/bi100773g CrossRefGoogle Scholar
  83. 83.
    Bateman, D.A. and Chakrabartty, A., Int. J. Alzheimer’s Dis., 2011, vol. 2011, 962352. doi:  10.4061/2011/962352 Google Scholar
  84. 84.
    Wood, S.J., Wetzel, R., Martin, J.D., and Hurle, M.R., Biochemistry, 1995, vol. 34, pp. 724–730.CrossRefGoogle Scholar
  85. 85.
    Klunk, W.E., Jacob, R.F., and Mason, R.P., Anal. Biochem., 1999, vol. 266, pp. 66–76.CrossRefGoogle Scholar
  86. 86.
    Yang, F., Lim, G.P., Begum, A.N., Ubeda, O.J., Simmons, M.R., Ambegaokar, S.S., Chen, P.P., Kayed, R., Glabe, C.G., Frautschy, S.A., and Cole, G.M., J. Biol. Chem., 2005, vol. 280, pp. 5892–5901. doi:  10.1074/jbc.M404751200 CrossRefGoogle Scholar
  87. 87.
    Lendel, C., Bolognesi, B., Wahlstrom, A., Dobson, C.M., and Graslund, A., Biochemistry, 2010, vol. 49, pp. 1358–1360. doi:  10.1021/bi902005t CrossRefGoogle Scholar
  88. 88.
    Rogers, D.R., Am. J. Clin. Pathol., 1965, vol. 44, pp. 59–61.Google Scholar
  89. 89.
    LeVine, H., 3rd, Protein Sci., 1993, vol. 2, pp. 404–410.CrossRefGoogle Scholar
  90. 90.
    Amdursky, N., Erez, Y., and Huppert, D., Acc. Chem. Res., 2012, vol. 45, pp. 1548–1557. doi:  10.1021/ar300053p CrossRefGoogle Scholar
  91. 91.
    Reinke, A.A. and Gestwicki, J.E., Chem. Biol. Drug. Des., 2011, vol. 77, pp. 399–411. doi:  10.1111/j.17470285.2011.01110.x CrossRefGoogle Scholar
  92. 92.
    Abelein, A., Kaspersen, J.D., Nielsen, S.B., Jensen, G.V., Christiansen, G., Pedersen, J.S., Danielsson, J., Otzen, D.E., and Graslund, A., J. Biol. Chem., 2013, vol. 288, pp. 23518–23528. doi:  10.1074/jbc.M113.470450 CrossRefGoogle Scholar
  93. 93.
    Benseny-Cases, N., Klementieva, O., and Cladera, J., Subcell. Biochem., 2012, vol. 65, pp. 53–74. doi:  10.1007/978-94-007-5416-4_3 CrossRefGoogle Scholar
  94. 94.
    Ryan, D.A., Narrow, W.C., Federoff, H.J., and Bowers, W.J., J. Neurosci. Methods, 2010, vol. 190, pp. 171–179. doi:  10.1016/j.jneumeth.2010.05.001 CrossRefGoogle Scholar
  95. 95.
    Levine, H., 3rd, Neurobiol. Aging, 1995, vol. 16, pp. 755–764.CrossRefGoogle Scholar
  96. 96.
    Ries, J. and Schwille, P., Bioessays, 2012, vol. 34, pp. 361–368. doi:  10.1002/bies.201100111 CrossRefGoogle Scholar
  97. 97.
    Mehta, P.D., Pirttila, T., Mehta, S.P., Sersen, E.A., Aisen, P.S., and Wisniewski, H.M., Arch. Neurol., 2000, vol. 57, pp. 100–105. doi:  10.1001/archneur.57.1.100 CrossRefGoogle Scholar
  98. 98.
    Tjernberg, L.O., Pramanik, A., Bjorling, S., Thyberg, P., Thyberg, J., Nordstedt, C., Berndt, K.D., Terenius, L., and Rigler, R., Chem. Biol., 1999, vol. 6, pp. 53–62. doi:  10.1016/S1074-5521(99)80020-9 CrossRefGoogle Scholar
  99. 99.
    Sengupta, P., Garai, K., Sahoo, B., Shi, Y., Callaway, D.J., and Maiti, S., Biochemistry, 2003, vol. 42, pp. 10506–10513. doi:  10.1021/bi0341410 CrossRefGoogle Scholar
  100. 100.
    Mittag, J.J., Milani, S., Walsh, D.M., Radler, J.O., and McManus, J.J., Biochem. Biophys. Res. Commun., 2014, vol. 448, pp. 195–199. doi:  10.1016/j.bbrc.2014.04.088 CrossRefGoogle Scholar
  101. 101.
    Garai, K., Sahoo, B., Kaushalya, S. K., Desai, R., and Maiti, S., Biochemistry, 2007, vol. 46, pp. 10655–10663. doi:  10.1021/bi700798b CrossRefGoogle Scholar
  102. 102.
    Wiesehan, K., Stohr, J., Nagel-Steger, L., van Groen, T., Riesner, D., and Willbold, D., Protein Eng. Des. Sel., 2008, vol. 21, pp. 241–246. doi:  10.1093/protein/gzm054 CrossRefGoogle Scholar
  103. 103.
    Hochdorffer, K., Marz-Berberich, J., Nagel-Steger, L., Epple, M., Meyer-Zaika, W., Horn, A.H., Sticht, H., Sinha, S., Bitan, G., and Schrader, T., J. Am. Chem. Soc., 2011, vol. 133, pp. 4348–4358. doi:  10.1021/ja107675n CrossRefGoogle Scholar
  104. 104.
    Jungbauer, L.M., Yu, C., Laxton, K.J., and LaDu, M.J., J. Mol. Recognit., 2009, vol. 22, pp. 403–413. doi:  10.1002/jmr.948 CrossRefGoogle Scholar
  105. 105.
    Munishkina, L.A. and Fink, A.L., Biochim. Biophys. Acta., 2007, vol. 1768, pp. 1862–1885. doi:  10.1016/j.bbamem.2007.03.015 CrossRefGoogle Scholar
  106. 106.
    Quinn, S.D., Dalgarno, P.A., Cameron, R.T., Hedley, G.J., Hacker, C., Lucocq, J.M., Baillie, G.S., Samuel, I.D., and Penedo, J.C., Mol. Biosyst., 2013, vol. 10, pp. 34–44. doi:  10.1039/c3mb70272c CrossRefGoogle Scholar
  107. 107.
    Garzon-Rodriguez, W., Sepulveda-Becerra, M., Milton, S., and Glabe, C.G., J. Biol. Chem., 1997, vol. 272, pp. 21037–21044.CrossRefGoogle Scholar
  108. 108.
    Ran, C., Zhao, W., Moir, R.D., and Moore, A., PLoS One, 2011, vol. 6, e19362. doi:  10.1371/journal.pone.0019362 CrossRefGoogle Scholar
  109. 109.
    Suprun, E.V., Shumyantseva, V.V., and Archakov, A.I., Electrochem. Acta, 2014, vol. 140, pp. 72–82. doi:  10.1016/j.electacta.2014.03.089 CrossRefGoogle Scholar
  110. 110.
    Vestergaard, M., Kerman, K., Saito, M., Nagatani, N., Takamura, Y., and Tamiya, E., J. Am. Chem. Soc., 2005, vol. 127, pp. 11892–11893. doi:  10.1021/ja052522q CrossRefGoogle Scholar
  111. 111.
    Lopes, P., Xu, M., Zhang, M., Zhou, T., Yang, Y., Wang, C., and Ferapontova, E.E. Nanoscale, 2014, vol. 6, pp. 7853–7857. doi:  10.1039/c4nr02413c CrossRefGoogle Scholar
  112. 112.
    Geng, J., Yu, H., Ren, J., and Qu, X., Electrochem. Com., 2008, vol. 10, pp. 1798–1800. doi:  10.1016/j.elecom.2008.09.020 CrossRefGoogle Scholar
  113. 113.
    Hung, V.W.-S., Masoom, H., and Kerman, K., J. Electrochem. Chem., 2012, vol. 681, pp. 89–95. doi:  10.1016/j.elechem.2012.05.023 CrossRefGoogle Scholar
  114. 114.
    Veloso, A.J., Hung, V.W.S., Cheng, X.R., and Kerman, K., Electroanalysis, 2012, vol. 24, pp. 1847–1851. doi:  10.1002/elan.201200216 CrossRefGoogle Scholar
  115. 115.
    Veloso, A.J. and Kerman, K., Bioelectrochemistry, 2012, vol. 84, pp. 49–52. doi:  10.1016/j.bioelechem.2011.08.007 CrossRefGoogle Scholar
  116. 116.
    Sepkhanova, I., Drescher, M., Meeuwenoord, N. J., Limpens, R.W., Koning, R.I., Filippov, D.V., and Huber, M., Appl. Magn. Reson., 2009, vol. 36, pp. 209–222. doi:  10.1007/s00723-009-0019-1 CrossRefGoogle Scholar
  117. 117.
    Ionut Iurascu, M., Cozma, C., Tomczyk, N., Rontree, J., Desor, M., Drescher, M., and Przybylski, M., Anal. Bioanal. Chem., 2009, vol. 395, pp. 2509–2519. doi:  10.1007/s00216-009-3164-3 CrossRefGoogle Scholar
  118. 118.
    Gu, L., Liu, C., and Guo, Z., J. Biol. Chem., 2013, vol. 288, pp. 18673–18683. doi:  10.1074/jbc.M113.457739 CrossRefGoogle Scholar
  119. 119.
    Bitan, G., Fradinger, E.A., Spring, S.M., and Teplow, D.B., Amyloid, 2005, vol. 12, pp. 88–95. doi:  10.1080/13506120500106958 CrossRefGoogle Scholar
  120. 120.
    Wu, H., Zhang, F., Williamson, N., Jian, J., Zhang, L., Liang, Z., Wang, J., An, L., Tunnacliffe, A., and Zheng, Y., PLoS One, 2014, vol. 9, e109438. doi:  10.1371/journal.pone.0109438 CrossRefGoogle Scholar
  121. 121.
    Rangachari, V., Moore, B.D., Reed, D.K., Sonoda, L.K., Bridges, A.W., Conboy, E., Hartigan, D., and Rosenberry T. L., Biochemistry, 2007, vol. 46, pp. 12451–12462. doi:  10.1021/bi701213s CrossRefGoogle Scholar
  122. 122.
    Sureshbabu, N., Kirubagaran, R., and Jayakumar, R., Eur. Biophys. J., 2009, vol. 38, pp. 355–367. doi:  10.1007/s00249-008-0379-8 CrossRefGoogle Scholar
  123. 123.
    Bernstein, S.L., Wyttenbach, T., Baumketner, A., Shea, J.E., Bitan, G., Teplow, D.B., and Bowers, M.T., J. Am. Chem. Soc., 2005, vol. 127, pp. 2075–2084. doi:  10.1021/ja044531p CrossRefGoogle Scholar
  124. 124.
    Bagriantsev, S.N., Kushnirov, V.V., and Liebman, S.W., Methods Enzymol., 2006, vol. 412, pp. 33–48. doi:  10.1016/S0076-6879(06)12003-0 CrossRefGoogle Scholar
  125. 125.
    Ono, K., Condron, M.M., and Teplow, D.B., J. Biol. Chem., 2010, vol. 285, pp. 23186–23197. doi:  10.1074/jbc.M109.086496 CrossRefGoogle Scholar
  126. 126.
    Sugiki, T. and Utsunomiya-Tate, N., Biochem. Biophys. Res. Commun., 2013, vol. 441, pp. 493–498. doi:  10.1016/j.bbrc.2013.10.084 CrossRefGoogle Scholar
  127. 127.
    Wang, J., Varghese, M., Ono, K., Yamada, M., Levine, S., Tzavaras, N., Gong, B., Hurst, W.J., Blitzer, R.D., Pasinetti, G.M., J. Alzheimer’s Dis., 2014, vol. 41, pp. 643–650. doi:  10.3233/JAD-132231 Google Scholar
  128. 128.
    Sabella, S., Quaglia, M., Lanni, C., Racchi, M., Govoni, S., Caccialanza, G., Calligaro, A., Bellotti, V., and De Lorenzi, E., Electrophoresis, 2004, vol. 25, pp. 3186–3194. doi:  10.1002/elps.200406062 CrossRefGoogle Scholar
  129. 129.
    Picou, R.A., Kheterpal, I., Wellman, A.D., Minnamreddy, M., Ku, G., and Gilman, S.D., J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 2011, vol. 879, pp. 627–632. doi:  10.1016/j.jchromb.2011.01.030 CrossRefGoogle Scholar
  130. 130.
    Pryor, N.E., Moss, M.A., and Hestekin, C.N., Electrophoresis, 2014, vol. 35, pp. 1814–1820. doi:  10.1002/elps.201400012 CrossRefGoogle Scholar
  131. 131.
    Brogi, S., Butini, S., Maramai, S., Colombo, R., Verga, L., Lanni, C., De Lorenzi, E., Lamponi, S., Andreassi, M., Bartolini, M., Andrisano, V., Novellino, E., Campiani, G., Brindisi, M., and Gemma, S., CNS Neurosci. Ther., 2014, vol. 20, pp. 624–632. doi:  10.1111/cns.12290 CrossRefGoogle Scholar
  132. 132.
    Thelen, J.J. and Miernyk, J.A., Biochem. J., 2012, vol. 444, pp. 169–181. doi:  10.1042/BJ20110363 CrossRefGoogle Scholar
  133. 133.
    Zovo, K., Helk, E., Karafin, A., Tougu, V., and Palumaa, P., Anal. Chem., 2010, vol. 82, pp. 8558–8565. doi:  10.1021/ac101583q CrossRefGoogle Scholar
  134. 134.
    Bartolini, M., Naldi, M., Fiori, J., Valle, F., Biscarini, F., Nicolau, D.V., Andrisano, V., Anal. Biochem., 2011, vol. 414, pp. 215–225. doi:  10.1016/j.ab.2011.03.020 CrossRefGoogle Scholar
  135. 135.
    Cernescu, M., Stark, T., Kalden, E., Kurz, C., Leuner, K., Deller, T., Gobel, M., Eckert, G.P., and Brutschy, B., Anal. Chem., 2012, vol. 84, pp. 5276–5284. doi:  10.1021/ac300258m CrossRefGoogle Scholar
  136. 136.
    Bernstein, S.L., Dupuis, N.F., Lazo, N.D., Wyttenbach, T., Condron, M.M., Bitan, G., Teplow, D.B., Shea, J.E., Ruotolo, B.T., Robinson, C.V., and Bowers, M.T., Nat. Chem., 2009, vol. 1, pp. 326–331. doi:  10.1038/nchem.247 CrossRefGoogle Scholar
  137. 137.
    Kloniecki, M., Jablonowska, A., Poznanski, J., Langridge, J., Hughes, C., Campuzano, I., Giles, K., and Dadlez, M., J. Mol. Biol., 2011, vol. 407, pp. 110–124. doi:  10.1016/j.jmb.2011.01.012 CrossRefGoogle Scholar
  138. 138.
    Sitkiewicz, E., Kloniecki, M., Poznanski, J., Bal, W., and Dadlez, M., J. Mol. Biol., 2014, vol. 426, pp. 2871–2885. doi:  10.1016/j.jmb.2014.05.015 CrossRefGoogle Scholar
  139. 139.
    Murray, M.M., Krone, M.G., Bernstein, S.L., Baumketner, A., Condron, M.M., Lazo, N.D., Teplow, D.B., Wyttenbach, T., Shea, J.E., Bowers, M.T., J. Phys. Chem. B, 2009, vol. 113, pp. 6041–6046. doi:  10.1021/jp808384x CrossRefGoogle Scholar
  140. 140.
    Gessel, M.M., Bernstein, S., Kemper, M., Teplow, D.B., and Bowers, M.T., ACS Chem. Neurosci., 2012, vol. 3, pp. 909–918. doi:  10.1021/cn300050d CrossRefGoogle Scholar
  141. 141.
    Roychaudhuri, R., Lomakin, A., Bernstein, S., Zheng, X., Condron, M.M., Benedek, G.B., Bowers, M., and Teplow, D.B., J. Mol. Biol., 2014, vol. 426, pp. 2422–2441. doi:  10.1016/j.jmb.2014.04.004 CrossRefGoogle Scholar
  142. 142.
    Young, L.M., Saunders, J.C., Mahood, R.A., Revill, C.H., Foster, R.J., Tu, L.H., Raleigh, D.P., Radford, S.E., and Ashcroft, A.E., Nat. Chem., 2015, vol. 7, pp. 73–81. doi:  10.1038/nchem.2129 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. P. Radko
    • 1
    • 2
  • S. A. Khmeleva
    • 1
  • E. V. Suprun
    • 1
  • S. A. Kozin
    • 2
  • N. V. Bodoev
    • 1
  • A. A. Makarov
    • 2
  • A. I. Archakov
    • 1
  • V. V. Shumyantseva
    • 1
  1. 1.Institute of Biomedical ChemistryMoscowRussia
  2. 2.Engelhardt Institute of Molecular Biology of Russian Academy of SciencesMoscowRussia

Personalised recommendations