Skip to main content
Log in

Physico-chemical methods for studying amyloid-β aggregation

  • Published:
Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is the most prevalent neurodegenerative pathology. According to the amyloid cascade hypothesis, transition of the amyloid-β peptide (Aβ) from the monomeric form to the aggregated state is a key event in pathogenesis of the Alzheimer’s disease. The mechanism of Aβ aggregation is intensively studied in vitro, by means of synthetic peptides and various physico-chemical methods allowing evaluation of size, molecular structure, and morphology of the formed aggregates. The review considers both the wellknown and recently introduced physico-chemical methods for analysis of Aβ aggregation, including microscopy, optical and fluorescent methods, electron paramagnetic resonance, electrochemical and electrophoretic methods, gel-filtration, and mass spectrometric methods. Advantages and disadvantages of these methods are considered. Special attention is paid to the unique possibility of simultaneous analysis of both Aβ monomers and its oligomers as well as large aggregates by means of atomic force microscopy or fluorescence correlation spectroscopy. The high detection sensitivity of the latter method provides opportunity for investigating the aggregation process in Aβ solutions of low peptide concentrations. Among mass spectrometric methods, the ion mobility mass spectrometry is considered as a method enabling to obtain information about both the spectrum of Aβ oligomers and their structure. Simultaneous employment of several methods providing complementary data about Aβ aggregates is the best experimental approach for studying the process of Aβ aggregation in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belousov, Yu.B., Zyryanov, S.K., Belousov, D.Yu., and Beketov, A.S., Kachestvennaya Klinicheskaya Praktika. Bolezn’ Altzgeimera (Special issue), 2009, pp. 3–28.

    Google Scholar 

  2. Shelkovnikova, T.A., Kulikova, A.A., Tsvetkov, F.O., Peters, O., Bachurin, S.O., Buchman, V.L., and Ninkina, N.N., Mol. Biol. (Moscow), 2012, vol. 46, pp. 402–415.

    Article  CAS  Google Scholar 

  3. Haass, C. and Selkoe, D.J., Nat. Rev. Mol. Cell. Biol., 2007, vol. 8, pp. 101–112. doi: 10.1038/nrm2101

    Article  CAS  Google Scholar 

  4. Vigo-Pelfrey, C., Lee, D., Keim, P., Lieberburg, I., and Schenk, D.B., J. Neurochem., 1993, vol. 61, pp. 1965–1968.

    Article  CAS  Google Scholar 

  5. Hardy, J., Curr. Alzheimer Res., 2006, vol. 3, pp. 71–73. doi: 10.2174/156720506775697098

    Article  CAS  Google Scholar 

  6. Kudinova, N.V., Kudinov, A.R., and Berezov, T.T., Biomed. Khim., 2007, vol. 53, pp. 119–127.

    CAS  Google Scholar 

  7. Maltsev, A.V. and Galzitskaya, O.V., Biomed. Khim., 2010, vol. 56, pp. 624–638.

    Article  CAS  Google Scholar 

  8. Bitan, G., Kirkitadze, M.D., Lomakin, A., Vollers, S.S., Benedek, G.B., and Teplow, D.B., Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 330–335. doi: 10.1073/pnas.222681699

    Article  CAS  Google Scholar 

  9. Jan, A., Hartley, D.M., and Lashuel, H.A., Nat. Protoc., 2010, vol. 5, pp. 1186–1209. doi: 10.1038/nprot.2010.72

    Article  CAS  Google Scholar 

  10. Faller, P., Hureau, C., and Berthoumieu, O., Inorg. Chem., 2013, vol. 52, pp. 12193–12206. doi: 10.1021/ic4003059

    Article  CAS  Google Scholar 

  11. Tsvetkov, P.O., Kulikova, A.A., Golovin, A.V., Tkachev, Y.V., Archakov, A.I., Kozin S.A., and Makarov, A. A., Biophys. J., 2010, vol. 99, pp. L84–86. doi: 10.1016/j.bpj.2010.09.015

    Article  CAS  Google Scholar 

  12. Zirah, S., Kozin, S.A., Mazur, A.K., Blond, A., Cheminant, M., Segalas-Milazzo, I., Debey, P., and Rebuffat, S., J. Biol. Chem., 2006, vol. 281, pp. 2151–2161. doi: 10.1074/jbc.M504454200

    Article  CAS  Google Scholar 

  13. Kozin, S.A., Zirah, S., Rebuffat, S., Hoa, G.H., and Debey, P., Biochem. Biophys. Res. Commun., 2001, vol. 285, pp. 959–964. doi: 10.1006/bbrc.2001.5284

    Article  CAS  Google Scholar 

  14. Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., and Teplow, D. B., J. Biol. Chem., 1997, vol. 272, pp. 22364–22372. doi: 10.1074/jbc.272.35.22364

    Article  CAS  Google Scholar 

  15. Goldsbury, C. S., Wirtz, S., Muller, S. A., Sunderji, S., Wicki, P., Aebi, U., and Frey, P. J. Struct. Biol., 2000, vol. 130, pp. 217–231. doi: 10.1006/jsbi.2000.4259

    Article  CAS  Google Scholar 

  16. Nybo, M., Svehag, S.E., and Holm Nielsen, E., Scand. J. Immunol., 1999, vol. 49, pp. 219–223. doi: 10.1046/j.1365-3083.1999.00526.x

    Article  CAS  Google Scholar 

  17. Lashuel, H.A., Hartley, D.M., Petre, B.M., Wall, J.S., Simon, M.N., Walz, T., and Lansbury, P.T., ffixJr., J. Mol. Biol., 2003, vol. 332, pp. 795–808. doi: 10.1016/S0022-2836(03)00927-6

    Article  CAS  Google Scholar 

  18. Antzutkin, O. N., Magn. Reson. Chem., 2004, vol. 42, pp. 231–246. doi: 10.1002/mrc.1341

    Article  CAS  Google Scholar 

  19. Matsumura, S., Shinoda, K., Yamada, M., Yokojima, S., Inoue, M., Ohnishi, T., Shimada, T., Kikuchi, K., Masui, D., Hashimoto, S., Sato, M., Ito, A., Akioka, M., Takagi, S., Nakamura, Y., Nemoto, K., Hasegawa, Y., Takamoto, H., Inoue, H., Nakamura, S., Nabeshima, Y., Teplow, D. B., Kinjo, M., and Hoshi, M., J. Biol. Chem., 2011, vol. 286, pp. 11555–11562. doi: 10.1074/jbc.M110.181313

    Article  CAS  Google Scholar 

  20. Wu, W.H., Liu, Q., Sun, X., Yu, J.S., Zhao, D.S., Yu, Y.P., Luo, J.J., Hu, J., Yu, Z.W., Zhao, Y.F., and Li, Y.M., Biochem. Biophys. Res. Commun., 2013, vol. 439, pp. 321–326. doi: 10.1016/j.bbrc.2013.08.088

    Article  CAS  Google Scholar 

  21. Poduslo, J.F. and Howell, K.G., J. Neurosci. Res., 2014, vol. 93, pp. 410–423. doi: 10.1002/jnr.23507

    Article  CAS  Google Scholar 

  22. Jun, S., Gillespie, J.R., Shin, B.K., and Saxena, S., Biochemistry, 2009, vol. 48, pp. 10724–10732. doi: 10.1021/bi9012935

    Article  CAS  Google Scholar 

  23. Feng, Y., Yang, S.G., Du, X.T., Zhang, X., Sun, X.X., Zhao, M., Sun, G.Y., and Liu, R.T., Biochem. Biophys. Res. Commun., 2009, vol. 390, pp. 1250–1254. doi: 10.1016/j.bbrc.2009.10.130

    Article  CAS  Google Scholar 

  24. Flashner, E., Raviv, U., and Friedler, A., Biochem. Biophys. Res. Commun., 2011, vol. 407, pp. 13–17. doi: 10.1016/j.bbrc.2011.02.067

    Article  CAS  Google Scholar 

  25. Ushikubo, H., Tanimoto, Y., Abe, K., Asakawa, T., Kan, T., and Akaishi, T., Biol. Pharm. Bull., 2014, vol. 37, pp. 748–754. doi: 10.1248/bpb.b13-00709

    Article  CAS  Google Scholar 

  26. Catto, M., Arnesano, F., Palazzo, G., De Stradis, A., Calo, V., Losacco, M., Purgatorio, R., and Campagna, F., Arch. Biochem. Biophys., 2014, vol. 560, pp. 73–82. doi: 10.1016/j.abb.2014.07.015

    Article  CAS  Google Scholar 

  27. Yagi, H., Hasegawa, K., Yoshimura, Y., and Goto, Y., Biochim. Biophys. Acta, 2013, vol. 1834, pp. 2480–2485. doi: 10.1016/j.bbapap.2013.08.013

    Article  CAS  Google Scholar 

  28. Bruggink, K. A., Muller, M., Kuiperij, H. B., and Verbeek, M.M., J. Alzheimer’s Dis., 2012, vol. 28, pp. 735–758. doi: 10.3233/JAD-2011-111421

    CAS  Google Scholar 

  29. Creasey, R.G., Gibson, C.T., and Voelcker, N.H., Curr. Protein Pept. Sci., 2012, vol. 13, pp. 232–257. doi: 10.2174/138920312800785058

    Article  CAS  Google Scholar 

  30. Harper, J.D., Wong, S.S., Lieber, C.M., and Lansbury, P.T., ffixJr., Biochemistry, 1999, vol. 38, pp. 8972–8980. doi: 10.1021/bi9904149

    Article  CAS  Google Scholar 

  31. Nichols, M.R., Moss, M.A., Reed, D.K., Lin, W.L., Mukhopadhyay, R., Hoh, J. H., and Rosenberry, T. L., Biochemistry, 2002, vol. 41, pp. 6115–6127. doi: 10.1021/bi015985r

    Article  CAS  Google Scholar 

  32. Chromy, B.A., Nowak, R.J., Lambert, M.P., Viola, K.L., Chang, L., Velasco, P.T., Jones, B.W., Fernandez, S.J., Lacor, P.N., Horowitz, P., Finch, C.E., Krafft, G.A., and Klein, W.L., Biochemistry, 2003, vol. 42, pp. 12749–12760. doi: 10.1021/bi030029q

    Article  CAS  Google Scholar 

  33. Arimon, M., Diez-Perez, I., Kogan, M.J., Durany, N., Giralt, E., Sanz, F., and Fernandez-Busquets, X., FASEB J., 2005, vol. 19, pp. 1344–1346. doi: 10.1096/fj.04-3137fje

    CAS  Google Scholar 

  34. Goldsbury, C., Aebi, U., and Frey, P., Trends Mol. Med., 2001, vol. 7, p. 582. doi: 10.1016/S14714914(01)02180-3

    Article  CAS  Google Scholar 

  35. Mastrangelo, I.A., Ahmed, M., Sato, T., Liu, W., Wang, C., Hough, P., and Smith, S.O., J. Mol. Biol., 2006, vol. 358, pp. 106–119. doi: 10.1016/j.jmb.2006.01.042

    Article  CAS  Google Scholar 

  36. Bin, Y., Li, X., He, Y., Chen, S., and Xiang, J., Acta. Biochim. Biophys. Sin. (Shanghai), 2013, vol. 45, pp. 570–577. doi: 10.1093/abbs/gmt044

    Article  CAS  Google Scholar 

  37. Lv, Z., Condron, M.M., Teplow, D.B., and Lyubchenko, Y.L., J. Neuroimmune Pharmacol., 2013, vol. 8, pp. 262–273. doi: 10.1007/s11481-0129416-6

    Article  Google Scholar 

  38. Wang, P., Liao, W., Fang, J., Liu, Q., Yao, J., Hu, M., and Ding, K., Carbohydr. Polym., 2014, vol. 110, pp. 142–147. doi: 10.1016/j.carbpol.2014.03.060

    Article  CAS  Google Scholar 

  39. Banerjee, R., Spectrochim. Acta A. Mol. Biomol. Spectrosc., 2014, vol. 117, pp. 798–800. doi: 10.1016/j.saa.2013.09.064

    Article  CAS  Google Scholar 

  40. Norlin, N., Hellberg, M., Filippov, A., Sousa, A.A., Grobner, G., Leapman, R.D., Almqvist, N., and Antzutkin, O.N., J. Struct. Biol., 2012, vol. 180, pp. 174–189. doi: 10.1016/j.jsb.2012.06.010

    Article  CAS  Google Scholar 

  41. Vestergaard, M., Hamada, T., Saito, M., Yajima, Y., Kudou, M., Tamiya, E., and Takagi, M., Biochem. Biophys. Res. Commun., 2008, vol. 377, pp. 725–728. doi: 10.1016/j.bbrc.2008.10.072

    Article  CAS  Google Scholar 

  42. Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H., Nat. Mater., 2005, vol. 4, pp. 435–446. doi: 10.1038/nmat1390

    Article  CAS  Google Scholar 

  43. Tokuraku, K., Marquardt, M., and Ikezu, T., PLoS One, 2009, vol. 4, e8492. doi: 10.1371/journal.pone.0008492

    Article  CAS  Google Scholar 

  44. Thakur, G., Micic, M., Yang, Y., Li, W., Movia, D., Giordani, S., Zhang, H., and Leblanc, R.M., Int. J. Alzheimer’s Dis., 2011, vol. 2011, 502386. doi: 10.4061/2011/502386

    Google Scholar 

  45. Ishigaki, Y., Tanaka, H., Akama, H., Ogara, T., Uwai, K., and Tokuraku, K., PLoS One, 2013, vol. 8, e72992. doi: 10.1371/journal.pone.0072992

    Article  CAS  Google Scholar 

  46. Chan, H.M., Xiao, L., Yeung, K.M., Ho, S.L., Zhao, D., Chan, W.H., and Li H.W., Biomaterials, 2012, vol. 33, pp. 4443–4450. doi: 10.1016/j.biomaterials.2012.03.024

    Article  CAS  Google Scholar 

  47. Greenfield, N.J., Nat. Protoc., 2006, vol. 1, pp. 2876–2890. doi: 10.1038/nprot.2006.202

    Article  CAS  Google Scholar 

  48. Barrow, C.J., Yasuda, A., Kenny, P.T., and Zagorski, M.G., J. Mol. Biol., 1992, vol. 225, pp. 1075–1093.

    Article  CAS  Google Scholar 

  49. Tomski, S.J. and Murphy, R.M., Arch. Biochem. Biophys., 1992, vol. 294, pp. 630–638.

    Article  CAS  Google Scholar 

  50. Baumketner, A., Bernstein, S.L., Wyttenbach, T., Bitan, G., Teplow, D.B., Bowers, M.T., and Shea, J.E., Protein Sci., 2006, vol. 15, pp. 420–428. doi: 10.1110/ps.051762406

    Article  CAS  Google Scholar 

  51. Bartolini, M., Bertucci, C., Bolognesi, M.L., Cavalli, A., Melchiorre, C., and Andrisano, V., Chembiochem., 2007, vol. 8, pp. 2152–2161. doi: 10.1002/cbic.200700427

    Article  CAS  Google Scholar 

  52. Du, X., Li, H., Wang, Z., Qiu, S., Liu, Q., and Ni, J., Metallomics, 2013, vol. 5, pp. 861–870. doi: 10.1039/c3mt20282h

    Article  CAS  Google Scholar 

  53. Chen, Q., Yang, L., Zheng, C., Zheng, W., Zhang, J., Zhou, Y., and Liu, J., Nanoscale, 2014, vol. 6, pp. 6886–6897. doi: 10.1039/c3nr05906e

    Article  CAS  Google Scholar 

  54. O’Nuallain, B., Freir, D.B., Nicoll, A.J., Risse, E., Ferguson, N., Herron, C.E., Collinge, J., and Walsh, D.M., J. Neurosci., 2010, vol. 30, pp. 14411–14419. doi: 10.1523/JNEUROSCI.3537-10.2010

    Article  CAS  Google Scholar 

  55. Stroud, J.C., Liu, C., Teng, P.K., and Eisenberg, D., Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 7717–7722. doi: 10.1073/pnas.1203193109

    Article  CAS  Google Scholar 

  56. Huang, T.H., Yang, D.S., Plaskos, N.P., Go, S., Yip, C.M., Fraser, P.E., and Chakrabartty, A., J. Mol. Biol., 2000, vol. 297, pp. 73–87. doi: 10.1006/jmbi.2000.3559

    Article  CAS  Google Scholar 

  57. Ono, K., Condron, M. M., and Teplow, D.B., Proc. Natl. Acad. Sci. USA, 2009, vol. 106, 14745–14750. doi: 10.1073/pnas.0905127106

  58. Kirkitadze, M.D., Condron, M.M., and Teplow, D.B., J. Mol. Biol., 2001, vol. 312, pp. 1103–1119. doi: 10.1006/jmbi.2001.4970

    Article  CAS  Google Scholar 

  59. Sarver, R.W., ffixJr. and Krueger, W.C. Anal. Biochem., 1991, vol. 194, pp. 89–100.

    Article  CAS  Google Scholar 

  60. Fraser, P.E., Nguyen, J.T., Surewicz, W.K., and Kirschner, D.A., Biophys. J., 1991, vol. 60, pp. 1190–1201.

    Article  CAS  Google Scholar 

  61. Benseny-Cases, N., Cocera, M., and Cladera, J., Biochem. Biophys. Res. Commun., 2007, vol. 361, pp. 916–921. doi: 10.1016/j.bbrc.2007.07.082

    Article  CAS  Google Scholar 

  62. Sarroukh, R., Cerf, E., Derclaye, S., Dufrene, Y. F., Goormaghtigh, E., Ruysschaert, J. M., and Raussens, V., Cell. Mol. Life Sci., 2011, vol. 68, pp. 1429–1438. doi: 10.1007/s00018-010-0529-x

    Article  CAS  Google Scholar 

  63. Bolognesi, B., Cohen, S.I., Aran Terol, P., Esbjorner, E.K., Giorgetti, S., Mossuto, M.F., Natalello, A., Brorsson, A.C., Knowles, T.P., Dobson, C.M., and Luheshi, L.M., ACS Chem. Biol., 2014, vol. 9, pp. 378–382. doi: 10.1021/cb400616y

    Article  CAS  Google Scholar 

  64. Wood, S.J., Maleeff, B., Hart, T., and Wetzel, R., J. Mol. Biol., 1996, vol. 256, pp. 870–877.

    Article  CAS  Google Scholar 

  65. Evans, K.C., Berger, E.P., Cho, C.G., Weisgraber, K.H., and Lansbury, P.T., ffixJr., Proc. Natl. Acad. Sci. USA 1995, vol., 92, pp. 763–767.

    Article  CAS  Google Scholar 

  66. Cook, N.P. and Marti, A.A., ACS Chem. Neurosci., 2012, vol. 3, pp. 896–899. doi: 10.1021/cn300135n

    Article  CAS  Google Scholar 

  67. Zhu, L., Han, Y., He, C., Huang, X., and Wang, Y., J. Phys. Chem. B, 2014, vol. 118, pp. 9298–9305. doi: 10.1021/jp503282m

    Article  CAS  Google Scholar 

  68. Thunecke, M., Lobbia, A., Kosciessa, U., Dyrks, T., Oakley, A.E., Turner, J., Saenger, W., and Georgalis, Y., J. Pept. Res., 1998, vol. 52, pp. 509–517.

    Article  CAS  Google Scholar 

  69. Picone, P., Carrotta, R., Montana, G., Nobile, M.R., San Biagio, P.L., and Di Carlo, M., Biophys. J., 2009, vol. 96, pp. 4200–4211. doi: 10.1016/j.bpj.2008.11.056

    Article  CAS  Google Scholar 

  70. Hepler, R.W., Grimm, K.M., Nahas, D.D., Breese, R., Dodson, E.C., Acton, P., Keller, P.M., Yeager, M., Wang, H., Shughrue, P., Kinney, G., and Joyce, J.G., Biochemistry, 2006, vol. 45, pp. 15157–15167. doi: 10.1021/bi061850f

    Article  CAS  Google Scholar 

  71. Rambaldi, D.C., Zattoni, A., Reschiglian, P., Colombo, R., and De Lorenzi, E., Anal. Bioanal. Chem., 2009, vol. 394, pp. 2145–2149. doi: 10.1007/s00216-009-2899-1

    Article  CAS  Google Scholar 

  72. Lomakin, A., Teplow, D.B., and Benedek, G.B., Methods Mol. Biol., 2005, vol. 299, pp. 153–174. doi: 10.1385/1-59259-874-9:153

    CAS  Google Scholar 

  73. Lomakin, A., Chung, D.S., Benedek, G.B., Kirschner, D.A., and Teplow, D.B., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 1125–1129.

    Article  CAS  Google Scholar 

  74. Murphy, R.M., and Pallitto, M.M., J. Struct. Biol., 2000, vol. 130, pp. 109–122. doi: 10.1006/jsbi.2000.4253

    Article  CAS  Google Scholar 

  75. Campagna, F., Catto, M., Purgatorio, R., Altomare, C.D., Carotti, A., De Stradis, A., and Palazzo, G., Eur. J. Med. Chem., 2011, vol. 46, pp. 275–284. doi: 10.1016/j.ejmech.2010.11.015

    Article  CAS  Google Scholar 

  76. Gorman, P.M., Yip, C.M., Fraser, P.E., and Chakrabartty, A., J. Mol. Biol., 2003, vol. 325, pp. 743–757. doi: 10.1016/S0022-2836(02)01279-2

    Article  CAS  Google Scholar 

  77. Churches, Q.I., Caine, J., Cavanagh, K., Epa, V.C., Waddington, L., Tranberg. C.E., Meyer, A.G., Varghese, J.N., Streltsov, V., and Duggan, P.J., Bioorg. Med. Chem. Lett., 2014, vol. 24, pp. 3108–3112. doi: 10.1016/j.bmcl.2014.05.008

    Article  CAS  Google Scholar 

  78. Bolognin, S., Messori, L., Drago, D., Gabbiani, C., Cendron, L., and Zatta, P., Int. J. Biochem. Cell. Biol., 2011, vol. 43, pp. 877–885. doi: 10.1016/j.biocel.2011.02.009

    Article  CAS  Google Scholar 

  79. Friedman, O.M., Matsudaira, P., Reis, A.H., ffixJr., Simister, N., Correia, I., Kew, D., Wei, J.Y., and Pochapsky, T., J. Alzheimer’s Dis., 2007, vol. 11, pp. 291–300.

    CAS  Google Scholar 

  80. Lakatos, A., Zsigo, E., Hollender, D., Nagy, N.V., Fulop, L., Simon, D., Bozso, Z., and Kiss, T., Dalton Trans., 2010, vol. 39, pp. 1302–1315. doi: 10.1039/b916366b

    Article  CAS  Google Scholar 

  81. Cizas, P., Budvytyte, R., Morkuniene, R., Moldovan, R., Broccio, M., Losche, M., Niaura, G., Valincius, G., and Borutaite, V., Arch. Biochem. Biophys., 2010, vol. 496, pp. 84–92. doi: 10.1016/j.abb.2010.02.001

    Article  CAS  Google Scholar 

  82. Li, H., Monien, B.H., Lomakin, A., Zemel, R., Fradinger, E.A., Tan, M., Spring, S.M., Urbanc, B., Xie, C.W., Benedek, G.B., and Bitan, G., Biochemistry, 2010, vol. 49, pp. 6358–6364. doi: 10.1021/bi100773g

    Article  CAS  Google Scholar 

  83. Bateman, D.A. and Chakrabartty, A., Int. J. Alzheimer’s Dis., 2011, vol. 2011, 962352. doi: 10.4061/2011/962352

    Google Scholar 

  84. Wood, S.J., Wetzel, R., Martin, J.D., and Hurle, M.R., Biochemistry, 1995, vol. 34, pp. 724–730.

    Article  CAS  Google Scholar 

  85. Klunk, W.E., Jacob, R.F., and Mason, R.P., Anal. Biochem., 1999, vol. 266, pp. 66–76.

    Article  CAS  Google Scholar 

  86. Yang, F., Lim, G.P., Begum, A.N., Ubeda, O.J., Simmons, M.R., Ambegaokar, S.S., Chen, P.P., Kayed, R., Glabe, C.G., Frautschy, S.A., and Cole, G.M., J. Biol. Chem., 2005, vol. 280, pp. 5892–5901. doi: 10.1074/jbc.M404751200

    Article  CAS  Google Scholar 

  87. Lendel, C., Bolognesi, B., Wahlstrom, A., Dobson, C.M., and Graslund, A., Biochemistry, 2010, vol. 49, pp. 1358–1360. doi: 10.1021/bi902005t

    Article  CAS  Google Scholar 

  88. Rogers, D.R., Am. J. Clin. Pathol., 1965, vol. 44, pp. 59–61.

    CAS  Google Scholar 

  89. LeVine, H., 3rd, Protein Sci., 1993, vol. 2, pp. 404–410.

    Article  CAS  Google Scholar 

  90. Amdursky, N., Erez, Y., and Huppert, D., Acc. Chem. Res., 2012, vol. 45, pp. 1548–1557. doi: 10.1021/ar300053p

    Article  CAS  Google Scholar 

  91. Reinke, A.A. and Gestwicki, J.E., Chem. Biol. Drug. Des., 2011, vol. 77, pp. 399–411. doi: 10.1111/j.17470285.2011.01110.x

    Article  CAS  Google Scholar 

  92. Abelein, A., Kaspersen, J.D., Nielsen, S.B., Jensen, G.V., Christiansen, G., Pedersen, J.S., Danielsson, J., Otzen, D.E., and Graslund, A., J. Biol. Chem., 2013, vol. 288, pp. 23518–23528. doi: 10.1074/jbc.M113.470450

    Article  CAS  Google Scholar 

  93. Benseny-Cases, N., Klementieva, O., and Cladera, J., Subcell. Biochem., 2012, vol. 65, pp. 53–74. doi: 10.1007/978-94-007-5416-4_3

    Article  CAS  Google Scholar 

  94. Ryan, D.A., Narrow, W.C., Federoff, H.J., and Bowers, W.J., J. Neurosci. Methods, 2010, vol. 190, pp. 171–179. doi: 10.1016/j.jneumeth.2010.05.001

    Article  CAS  Google Scholar 

  95. Levine, H., 3rd, Neurobiol. Aging, 1995, vol. 16, pp. 755–764.

    Article  CAS  Google Scholar 

  96. Ries, J. and Schwille, P., Bioessays, 2012, vol. 34, pp. 361–368. doi: 10.1002/bies.201100111

    Article  Google Scholar 

  97. Mehta, P.D., Pirttila, T., Mehta, S.P., Sersen, E.A., Aisen, P.S., and Wisniewski, H.M., Arch. Neurol., 2000, vol. 57, pp. 100–105. doi: 10.1001/archneur.57.1.100

    Article  CAS  Google Scholar 

  98. Tjernberg, L.O., Pramanik, A., Bjorling, S., Thyberg, P., Thyberg, J., Nordstedt, C., Berndt, K.D., Terenius, L., and Rigler, R., Chem. Biol., 1999, vol. 6, pp. 53–62. doi: 10.1016/S1074-5521(99)80020-9

    Article  CAS  Google Scholar 

  99. Sengupta, P., Garai, K., Sahoo, B., Shi, Y., Callaway, D.J., and Maiti, S., Biochemistry, 2003, vol. 42, pp. 10506–10513. doi: 10.1021/bi0341410

    Article  CAS  Google Scholar 

  100. Mittag, J.J., Milani, S., Walsh, D.M., Radler, J.O., and McManus, J.J., Biochem. Biophys. Res. Commun., 2014, vol. 448, pp. 195–199. doi: 10.1016/j.bbrc.2014.04.088

    Article  CAS  Google Scholar 

  101. Garai, K., Sahoo, B., Kaushalya, S. K., Desai, R., and Maiti, S., Biochemistry, 2007, vol. 46, pp. 10655–10663. doi: 10.1021/bi700798b

    Article  CAS  Google Scholar 

  102. Wiesehan, K., Stohr, J., Nagel-Steger, L., van Groen, T., Riesner, D., and Willbold, D., Protein Eng. Des. Sel., 2008, vol. 21, pp. 241–246. doi: 10.1093/protein/gzm054

    Article  CAS  Google Scholar 

  103. Hochdorffer, K., Marz-Berberich, J., Nagel-Steger, L., Epple, M., Meyer-Zaika, W., Horn, A.H., Sticht, H., Sinha, S., Bitan, G., and Schrader, T., J. Am. Chem. Soc., 2011, vol. 133, pp. 4348–4358. doi: 10.1021/ja107675n

    Article  CAS  Google Scholar 

  104. Jungbauer, L.M., Yu, C., Laxton, K.J., and LaDu, M.J., J. Mol. Recognit., 2009, vol. 22, pp. 403–413. doi: 10.1002/jmr.948

    Article  CAS  Google Scholar 

  105. Munishkina, L.A. and Fink, A.L., Biochim. Biophys. Acta., 2007, vol. 1768, pp. 1862–1885. doi: 10.1016/j.bbamem.2007.03.015

    Article  CAS  Google Scholar 

  106. Quinn, S.D., Dalgarno, P.A., Cameron, R.T., Hedley, G.J., Hacker, C., Lucocq, J.M., Baillie, G.S., Samuel, I.D., and Penedo, J.C., Mol. Biosyst., 2013, vol. 10, pp. 34–44. doi: 10.1039/c3mb70272c

    Article  Google Scholar 

  107. Garzon-Rodriguez, W., Sepulveda-Becerra, M., Milton, S., and Glabe, C.G., J. Biol. Chem., 1997, vol. 272, pp. 21037–21044.

    Article  CAS  Google Scholar 

  108. Ran, C., Zhao, W., Moir, R.D., and Moore, A., PLoS One, 2011, vol. 6, e19362. doi: 10.1371/journal.pone.0019362

    Article  CAS  Google Scholar 

  109. Suprun, E.V., Shumyantseva, V.V., and Archakov, A.I., Electrochem. Acta, 2014, vol. 140, pp. 72–82. doi: 10.1016/j.electacta.2014.03.089

    Article  CAS  Google Scholar 

  110. Vestergaard, M., Kerman, K., Saito, M., Nagatani, N., Takamura, Y., and Tamiya, E., J. Am. Chem. Soc., 2005, vol. 127, pp. 11892–11893. doi: 10.1021/ja052522q

    Article  CAS  Google Scholar 

  111. Lopes, P., Xu, M., Zhang, M., Zhou, T., Yang, Y., Wang, C., and Ferapontova, E.E. Nanoscale, 2014, vol. 6, pp. 7853–7857. doi: 10.1039/c4nr02413c

    Article  CAS  Google Scholar 

  112. Geng, J., Yu, H., Ren, J., and Qu, X., Electrochem. Com., 2008, vol. 10, pp. 1798–1800. doi: 10.1016/j.elecom.2008.09.020

    Article  CAS  Google Scholar 

  113. Hung, V.W.-S., Masoom, H., and Kerman, K., J. Electrochem. Chem., 2012, vol. 681, pp. 89–95. doi: 10.1016/j.elechem.2012.05.023

    Article  CAS  Google Scholar 

  114. Veloso, A.J., Hung, V.W.S., Cheng, X.R., and Kerman, K., Electroanalysis, 2012, vol. 24, pp. 1847–1851. doi: 10.1002/elan.201200216

    Article  CAS  Google Scholar 

  115. Veloso, A.J. and Kerman, K., Bioelectrochemistry, 2012, vol. 84, pp. 49–52. doi: 10.1016/j.bioelechem.2011.08.007

    Article  CAS  Google Scholar 

  116. Sepkhanova, I., Drescher, M., Meeuwenoord, N. J., Limpens, R.W., Koning, R.I., Filippov, D.V., and Huber, M., Appl. Magn. Reson., 2009, vol. 36, pp. 209–222. doi: 10.1007/s00723-009-0019-1

    Article  CAS  Google Scholar 

  117. Ionut Iurascu, M., Cozma, C., Tomczyk, N., Rontree, J., Desor, M., Drescher, M., and Przybylski, M., Anal. Bioanal. Chem., 2009, vol. 395, pp. 2509–2519. doi: 10.1007/s00216-009-3164-3

    Article  CAS  Google Scholar 

  118. Gu, L., Liu, C., and Guo, Z., J. Biol. Chem., 2013, vol. 288, pp. 18673–18683. doi: 10.1074/jbc.M113.457739

    Article  CAS  Google Scholar 

  119. Bitan, G., Fradinger, E.A., Spring, S.M., and Teplow, D.B., Amyloid, 2005, vol. 12, pp. 88–95. doi: 10.1080/13506120500106958

    Article  Google Scholar 

  120. Wu, H., Zhang, F., Williamson, N., Jian, J., Zhang, L., Liang, Z., Wang, J., An, L., Tunnacliffe, A., and Zheng, Y., PLoS One, 2014, vol. 9, e109438. doi: 10.1371/journal.pone.0109438

    Article  CAS  Google Scholar 

  121. Rangachari, V., Moore, B.D., Reed, D.K., Sonoda, L.K., Bridges, A.W., Conboy, E., Hartigan, D., and Rosenberry T. L., Biochemistry, 2007, vol. 46, pp. 12451–12462. doi: 10.1021/bi701213s

    Article  CAS  Google Scholar 

  122. Sureshbabu, N., Kirubagaran, R., and Jayakumar, R., Eur. Biophys. J., 2009, vol. 38, pp. 355–367. doi: 10.1007/s00249-008-0379-8

    Article  CAS  Google Scholar 

  123. Bernstein, S.L., Wyttenbach, T., Baumketner, A., Shea, J.E., Bitan, G., Teplow, D.B., and Bowers, M.T., J. Am. Chem. Soc., 2005, vol. 127, pp. 2075–2084. doi: 10.1021/ja044531p

    Article  CAS  Google Scholar 

  124. Bagriantsev, S.N., Kushnirov, V.V., and Liebman, S.W., Methods Enzymol., 2006, vol. 412, pp. 33–48. doi: 10.1016/S0076-6879(06)12003-0

    Article  CAS  Google Scholar 

  125. Ono, K., Condron, M.M., and Teplow, D.B., J. Biol. Chem., 2010, vol. 285, pp. 23186–23197. doi: 10.1074/jbc.M109.086496

    Article  CAS  Google Scholar 

  126. Sugiki, T. and Utsunomiya-Tate, N., Biochem. Biophys. Res. Commun., 2013, vol. 441, pp. 493–498. doi: 10.1016/j.bbrc.2013.10.084

    Article  CAS  Google Scholar 

  127. Wang, J., Varghese, M., Ono, K., Yamada, M., Levine, S., Tzavaras, N., Gong, B., Hurst, W.J., Blitzer, R.D., Pasinetti, G.M., J. Alzheimer’s Dis., 2014, vol. 41, pp. 643–650. doi: 10.3233/JAD-132231

    CAS  Google Scholar 

  128. Sabella, S., Quaglia, M., Lanni, C., Racchi, M., Govoni, S., Caccialanza, G., Calligaro, A., Bellotti, V., and De Lorenzi, E., Electrophoresis, 2004, vol. 25, pp. 3186–3194. doi: 10.1002/elps.200406062

    Article  CAS  Google Scholar 

  129. Picou, R.A., Kheterpal, I., Wellman, A.D., Minnamreddy, M., Ku, G., and Gilman, S.D., J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 2011, vol. 879, pp. 627–632. doi: 10.1016/j.jchromb.2011.01.030

    Article  CAS  Google Scholar 

  130. Pryor, N.E., Moss, M.A., and Hestekin, C.N., Electrophoresis, 2014, vol. 35, pp. 1814–1820. doi: 10.1002/elps.201400012

    Article  CAS  Google Scholar 

  131. Brogi, S., Butini, S., Maramai, S., Colombo, R., Verga, L., Lanni, C., De Lorenzi, E., Lamponi, S., Andreassi, M., Bartolini, M., Andrisano, V., Novellino, E., Campiani, G., Brindisi, M., and Gemma, S., CNS Neurosci. Ther., 2014, vol. 20, pp. 624–632. doi: 10.1111/cns.12290

    Article  CAS  Google Scholar 

  132. Thelen, J.J. and Miernyk, J.A., Biochem. J., 2012, vol. 444, pp. 169–181. doi: 10.1042/BJ20110363

    Article  CAS  Google Scholar 

  133. Zovo, K., Helk, E., Karafin, A., Tougu, V., and Palumaa, P., Anal. Chem., 2010, vol. 82, pp. 8558–8565. doi: 10.1021/ac101583q

    Article  CAS  Google Scholar 

  134. Bartolini, M., Naldi, M., Fiori, J., Valle, F., Biscarini, F., Nicolau, D.V., Andrisano, V., Anal. Biochem., 2011, vol. 414, pp. 215–225. doi: 10.1016/j.ab.2011.03.020

    Article  CAS  Google Scholar 

  135. Cernescu, M., Stark, T., Kalden, E., Kurz, C., Leuner, K., Deller, T., Gobel, M., Eckert, G.P., and Brutschy, B., Anal. Chem., 2012, vol. 84, pp. 5276–5284. doi: 10.1021/ac300258m

    Article  CAS  Google Scholar 

  136. Bernstein, S.L., Dupuis, N.F., Lazo, N.D., Wyttenbach, T., Condron, M.M., Bitan, G., Teplow, D.B., Shea, J.E., Ruotolo, B.T., Robinson, C.V., and Bowers, M.T., Nat. Chem., 2009, vol. 1, pp. 326–331. doi: 10.1038/nchem.247

    Article  CAS  Google Scholar 

  137. Kloniecki, M., Jablonowska, A., Poznanski, J., Langridge, J., Hughes, C., Campuzano, I., Giles, K., and Dadlez, M., J. Mol. Biol., 2011, vol. 407, pp. 110–124. doi: 10.1016/j.jmb.2011.01.012

    Article  CAS  Google Scholar 

  138. Sitkiewicz, E., Kloniecki, M., Poznanski, J., Bal, W., and Dadlez, M., J. Mol. Biol., 2014, vol. 426, pp. 2871–2885. doi: 10.1016/j.jmb.2014.05.015

    Article  CAS  Google Scholar 

  139. Murray, M.M., Krone, M.G., Bernstein, S.L., Baumketner, A., Condron, M.M., Lazo, N.D., Teplow, D.B., Wyttenbach, T., Shea, J.E., Bowers, M.T., J. Phys. Chem. B, 2009, vol. 113, pp. 6041–6046. doi: 10.1021/jp808384x

    Article  CAS  Google Scholar 

  140. Gessel, M.M., Bernstein, S., Kemper, M., Teplow, D.B., and Bowers, M.T., ACS Chem. Neurosci., 2012, vol. 3, pp. 909–918. doi: 10.1021/cn300050d

    Article  CAS  Google Scholar 

  141. Roychaudhuri, R., Lomakin, A., Bernstein, S., Zheng, X., Condron, M.M., Benedek, G.B., Bowers, M., and Teplow, D.B., J. Mol. Biol., 2014, vol. 426, pp. 2422–2441. doi: 10.1016/j.jmb.2014.04.004

    Article  CAS  Google Scholar 

  142. Young, L.M., Saunders, J.C., Mahood, R.A., Revill, C.H., Foster, R.J., Tu, L.H., Raleigh, D.P., Radford, S.E., and Ashcroft, A.E., Nat. Chem., 2015, vol. 7, pp. 73–81. doi: 10.1038/nchem.2129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Radko.

Additional information

Original Russian Text © S.P. Radko, S.A. Khmeleva, E.V. Suprun, S.A. Kozin, N.V. Bodoev, A.A. Makarov, A.I. Archakov, V.V. Shumyantseva, 2015, published in Biomeditsin-skaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radko, S.P., Khmeleva, S.A., Suprun, E.V. et al. Physico-chemical methods for studying amyloid-β aggregation. Biochem. Moscow Suppl. Ser. B 9, 258–274 (2015). https://doi.org/10.1134/S1990750815030075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750815030075

Keywords

Navigation