Tumor necrosis factor-alpha is a potential target for the neuroprotector Dimebon

  • A. V. Alessenko
  • S. O. Bachurin
  • S. V. Gurianova
  • Y. O. Karatasso
  • E. F. Shevtsova
  • L. N. Shingarova
Article
  • 21 Downloads

Abstract

Since 1983, Dimebon (Dimebolin) is used clinically in Russia as an antihistamine drug. Recent interest in Dimebolin is associated with its therapeutic effect in patients with Alzheimer’s disease. Animal studies have shown that Dimebon activity is realized via multiple mechanisms. Our experiments performed on the fibroblast cell culture L929 and C57Bl mice have been shown that Dimebon may block cytotoxic signals induced by the proinflammatory cytokines, tumor necrosis factor α (TNFα). Dimebon (10 μg/mL) protected mouse fibroblast cells L929 against toxic action of TNFα. Pretreatment of mice with Dimebon prevented development of changes in molecular species of sphingomyelins and galactosylceramides induced by a single dose administration of TNAα. Dimebon itself did not induce changes in sphingolipids of the investigated brain structures.

Keywords

Dimebon TNF-α lipids mouse brain mouse fibroblasts L929 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matveeva, I.A., Farmakol. Toksikol., 1983, vol. 46, pp. 27–29.Google Scholar
  2. 2.
    Bachurin, S., Bukatina, E., Lermontova, N., Tkachenko, S., Afanasiev, A., Grigoriev, V., Grigorieva, I., Ivanov, Y., Sablin, S., and Zefirov, N., Ann. N.Y. Acad. Sci., 2001, vol. 939, pp. 425–435.CrossRefGoogle Scholar
  3. 3.
    Doody, R.S., Gavrilova, S.I., Sano, M., Thomas, R.G., Aisen, P.S., Bachurin, S.O., Seely, L., and Hung, D., Lancet, 2008, vol. 372, pp. 207–215.CrossRefGoogle Scholar
  4. 4.
    Ustyugov, A.A., Shelkovnikova, T.A., Kokhan, V.S., Khritankova, I.V., Peters, O., Buchman, V.L., Bachurin, S.O., and Ninkina, N.N., Byul. Eksper. Biol. Med., 2011, vol. 152, pp. 675–678.Google Scholar
  5. 5.
    Khritankova, I.V., Kukharskii, M.S., Lytkina, O.A., Bachurin, S.O., and Shoring, B.Y., Dokl. Biol. Sci., 2012, vol. 446, pp. 471–473.Google Scholar
  6. 6.
    Steele, J.W. and Gandy, S., Autophagy, 2013, vol. 4, pp. 617–618.CrossRefGoogle Scholar
  7. 7.
    Shevtsova, E.F., Kireeva, E.G., and Bachurin, S.O., Byul. Eksper. Biol. Med., 2001, vol. 132, pp. 652–656.Google Scholar
  8. 8.
    Shevtsova, E.F., Kireeva, E.G., and Bachurin, S.O., Vestn. RAMN, 2005, no. 9, pp. 13–17.Google Scholar
  9. 9.
    Burns, A. and Jacoby, R., Lancet, 2008, vol. 372, pp. 179–180.CrossRefGoogle Scholar
  10. 10.
    Sachdeva, D. and Burns, A., CNS Neurosci. Ther., 2011, vol. 3, pp. 199–205.CrossRefGoogle Scholar
  11. 11.
    Fiers, W., FEBS Lett., 1991, vol. 285, pp. 199–212.CrossRefGoogle Scholar
  12. 12.
    Vassali, P., Ann. Rev. Immunol., 1992, vol. 10, pp. 411–452.CrossRefGoogle Scholar
  13. 13.
    Smith, J.A., Das, A., Ray, S.K., and Banik, N.L., Brain Res. Bull., 2012, vol. 87, pp. 10–20.CrossRefGoogle Scholar
  14. 14.
    Cacquevel, M.L., Lebeurrier, N., Chéenne, S., and Vivien, D., Curr. Drug Targets, 2004, vol. 5, pp. 529–534.CrossRefGoogle Scholar
  15. 15.
    Montgomery, S.L. and Bowers, W.J., J. Neuroimmune Pharmacol., 2012, vol. 7, pp. 42–59.CrossRefGoogle Scholar
  16. 16.
    Arvin, B., Neville, L.F., Barone, F.C., and Feuerstein, G.Z., Neurosci. Biobehav. Rev., 1996, vol. 20, pp. 445–452.CrossRefGoogle Scholar
  17. 17.
    Clark, I.A., Alleva, L.M., and Vissel, B., Pharmacol. Ther., 2010, vol. 128, pp. 519–448.CrossRefGoogle Scholar
  18. 18.
    Hoffmann, O., Zipp, F., and Weber, J.R., J. Mol. Med. (Berl), 2009, vol. 87, pp. 753–763.CrossRefGoogle Scholar
  19. 19.
    Rubio-Perez, J.M., and Morillas-Ruiz, J.M., Scientific World Journal, 2012, vol. 2012, pp. 1–15.CrossRefGoogle Scholar
  20. 20.
    Perry, R.T., Collins, J.S., Wiener, H., Acton, R., and Go, R.C., Neurobiol. Aging, 2001, vol. 22, pp. 873–883.CrossRefGoogle Scholar
  21. 21.
    McAlpine, F.E. and Tansey, M.G., J. Inflamm. Res., 2008, vol. 1, pp. 29–39.Google Scholar
  22. 22.
    Rozhnova, U.A., Stepanichev, M.Yu., Korobko, V.G., Gulyaeva, N.V., and Alessenko, A.V., Neurochem. J., 1999, vol. 16, pp. 302–309.Google Scholar
  23. 23.
    Osburg, B., Domling, D., Schomburg, L., Ko, Y.T., Voigt, K., and Bickel, U., Am. J. Physiol. Endocrinol. Metab., 2002, vol. 283, pp. 899–908.CrossRefGoogle Scholar
  24. 24.
    Engelhardt, B., J. Neural Transm., 2006, vol. 113, pp. 477–485.CrossRefGoogle Scholar
  25. 25.
    Giri, R., Shen, Y., Stins, M., Schmidt, A.M., Stern, D., Kim, K.S., and Kalra, V.K., Am. J. Physiol. Cell Physiol., 2000, vol. 279, pp. 1772–1781.Google Scholar
  26. 26.
    Adibhatla, R.M. and Hatcher, J.F., Subcell. Biochem., 2008, vol. 49, pp. 241–268.Google Scholar
  27. 27.
    Tweedie, D., Sambamurti, K., and Greig, N.H., Curr. Alzheimer Res., 2007, vol. 4, pp. 378–385.CrossRefGoogle Scholar
  28. 28.
    Tettamanti, G., Prinetti, A., Bassi, R., Viani, P., Giussani, P., and Riboni, L., J. Lipid. Mediat. Cell. Signal., 1996, vol. 14, pp. 263–275.CrossRefGoogle Scholar
  29. 29.
    Martinez, T., Chen, X., Bandyopadhyay, S., Merrill, A., and Tansey, M., Mol. Neurodegener., 2012, vol. 13, pp. 7–45.Google Scholar
  30. 30.
    Jana, A., Hogan, T.L., and Pahan, K., J. Neurol. Sci., 2009, vol. 278, pp. 5–15.CrossRefGoogle Scholar
  31. 31.
    Barth, B.M., Gustafson, S.J., and Kuhn, T.B., J. Neurosci. Res., 2012, vol. 90, pp. 229–242.CrossRefGoogle Scholar
  32. 32.
    Wheeler, D., Knapp, E., Bandaru, V.V.R., Wang, Y., Knorr, D., Poirier, C., Mattson, M.P., Geiger, J.D., and Haughey, N.J., J. Neurochem., 2009, vol. 109, pp. 1237–1249.CrossRefGoogle Scholar
  33. 33.
    Alessenko, A.V., Biomed. Khim., 2013, vol. 59, pp. 25–50.CrossRefGoogle Scholar
  34. 34.
    Tobinick, E., CNS Drugs, 2009, vol. 23, pp. 713–725.CrossRefGoogle Scholar
  35. 35.
    Frankola, K.A., Greig, N.H., Luo, W., and Tweedie, D., CNS Neurol. Disord. Drug Targets, 2011, vol. 10, pp. 391–403.CrossRefGoogle Scholar
  36. 36.
    Bligh, T.G. and Dyer, W.J., Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911–917.CrossRefGoogle Scholar
  37. 37.
    Alessenko, A.V., Bugrova, A.E., and Dudnik, L.B., Biochem. Soc. Trans., 2004, vol. 32, pp. 144–146.CrossRefGoogle Scholar
  38. 38.
    Alessenko, A.V., in New Research on Alzheimer’s Disease, Welsh, E.M., Ed., Nova Science Publishers, Inc., 2006, pp. 168–189.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Alessenko
    • 1
  • S. O. Bachurin
    • 2
  • S. V. Gurianova
    • 3
  • Y. O. Karatasso
    • 1
  • E. F. Shevtsova
    • 2
  • L. N. Shingarova
    • 3
  1. 1.Emanuel Institute of Biochemical Physics of the Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Physiologically Active Substances of the Russian Academy of SciencesChernogolovkaRussia
  3. 3.Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussia

Personalised recommendations