The vanadium compounds: Chemistry, synthesis, insulinomimetic properties

  • E. V. Fedorova
  • A. V. Buryakina
  • N. M. Vorobieva
  • N. I. Baranova


The review considers the biological role of vanadium, its involvement in various processes in humans and other mammals, and the anti-diabetic effect of its compounds. Vanadium salts have persistent hypoglycemic and antihyperlipidemic effects and reduce the probability of secondary complications in animals with experimental diabetes. The review contains detailed description of all major synthesized vanadium complexes with antidiabetic activity. Currently, vanadium complexes with organic ligands are more effective and safer than the inorganic salts. Despite well-documented efficacy of these compounds as the anti-diabetic agents in animal models, only one organic complex of vanadium is currently under the second phase of clinical trials. All of the considered data suggest that vanadium compounds are a new promising class of drugs in modern pharmacotherapy of diabetes.


diabetes mellitus vanadium vanadyl vanadate insulinomimetic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    Cooke, D.W., Diabetes mellitus, in Encyclopedia of Biological Chemistry, 2004, vol. 1, pp. 582–592.Google Scholar
  4. 4.
    Aziz, K.M., Recent. Pat. Endocr. Metab. Immune Drug Discov., 2012, vol. 6, no. 2., pp. 148–170.Google Scholar
  5. 5.
    Seino, S., Takahashi, H., Takahashi, T., and Shibasaki, T., Diabetes Obes. Metab., 2012, vol. 1, pp. 9–13.Google Scholar
  6. 6.
    Rathnapala, A., Matthias, T., and Jayasinghe, S., J. Med. Case Reports, 2012, vol. 6, no. 18, pp. 2–4.Google Scholar
  7. 7.
    Derosa, G. and Maffioli, P., Clin. Ther., 2012, vol. 34, pp. 1221–1236.Google Scholar
  8. 8.
    Badmaev, V., Prakash, S., and Majeed, M., J. Alternative Complementary Med., 1999, vol. 5, pp. 273–291.Google Scholar
  9. 9.
    Zeng, C., Hou, G., Dick, R., and Brewer, G.J., Exp. Biol. Med. (Maywood), 2008, vol. 233, pp. 1021–1025.Google Scholar
  10. 10.
    Broadhurst, C.L. and Domenico, P., Diabetes Technol. Ther., 2006, vol. 8, pp. 677–687.Google Scholar
  11. 11.
    Salgueiro, M.J., Krebs, N., and Zubillaga, M.B., Biol. Trace Element Res., 2001, vol. 81, pp. 215–228.Google Scholar
  12. 12.
    Flores, C.R., Puga, M.P., Wróbel, K., Sevilla, E.G., and Wróbel, K., Diabetes Res. Clin. Pract., 2011, vol. 91, no. 3, pp. 333–341.Google Scholar
  13. 13.
    Chen, Y.W., Yang, C.Y., Huang, C.F., Hung, D.Z., Leung, Y.M., and Shing, S.H., Islets, 2009, vol. 1, no. 3, pp. 169–176.Google Scholar
  14. 14.
    Byrne, A.R. and Costa, L., Sci. Total Environ., 1978, vol. 10, pp. 17–30.Google Scholar
  15. 15.
    Underwood, E.J., in Trace Elements in Human and Animal Nutrition, 41st ed., New York: Academic Press, 1977.Google Scholar
  16. 16.
    Nozdryukhina, L.R., Biologicheskaya rol’ mikroelementov v organizme cheloveka i zhivotnykh (Biological Role of Microelements in Animal and Human Organism), Moscow: Nauka, 1977.Google Scholar
  17. 17.
    Henze, M., Hoppe-Seyer’s Z. Physiol. Chem., 1911, vol. 72, pp. 494–501.Google Scholar
  18. 18.
    Ueki, T., Shintaku, K., Yonekawa, Y., Takatsu, N., Yamada, H., Hamada, Y., Hirota, H., and Michibata, H., Biochim. Biophys. Acta, 2007, vol. 1770, pp. 951–957.Google Scholar
  19. 19.
    Stacey, J. E. and Driedzic, W.R., J. Exper. Marine Biol. Ecol., 2010, vol. 386, pp. 11–18.Google Scholar
  20. 20.
    Ueki, T. and Michibata, H., Coordination Chem. Rev., 2011, vol. 255, pp. 2249–2257.Google Scholar
  21. 21.
    Bayer, E., Metal Ions in Biological Systems, 1995, vol. 31, pp. 407–421.Google Scholar
  22. 22.
    Almeida, M., Humanes, M., Melo, R., Silva, A., Silva, J.J.R.F.D., Vilter, H., et al., Phytochemistry, 1998, vol. 48, pp. 229–239.Google Scholar
  23. 23.
    Almeida, M., Filipe, S., Humanes, M., Maia, M.F., Melo, R., Severino, N., da Silva, J.A., Fraústo da Silva, J.J., and Wever, R., Phytochemistry, 2001, vol. 57, pp. 633–642.Google Scholar
  24. 24.
    Krenn, B.E., Tromp, M.G., and Wever, R., J. Biol. Chem., 1989, vol. 264, pp. 19287–19292.Google Scholar
  25. 25.
    Coupe, E.E., Smyth, M.G., Fosberry, A.P., Hall, R.M., and Littlechild, J.A., Protein Expression and Purification, 2007, vol. 52, pp. 265–272.Google Scholar
  26. 26.
    Brink, H.B., Dekker, H.L., Shoemaker, H.E., and Wever, R., J. Inorg. Biochem., 2000, vol. 80, pp. 91–98.Google Scholar
  27. 27.
    Butler, A. and Walker, J.V., Chem. Rev., 1993, vol. 93, pp. 1937–1944.Google Scholar
  28. 28.
    Eady, R.R., Metal Ions Biol. Syst., 1995, vol. 31, pp. 363–405.Google Scholar
  29. 29.
    Littlechild, J., Curr. Opin. Chem. Biol., 1999, vol. 3, pp. 28–34.Google Scholar
  30. 30.
    Butler, A. and Carter-Franklin, J.N., Nat. Prod. Rep., 2004, vol. 21, pp. 180–188.Google Scholar
  31. 31.
    Cantley, L.C., Jr., Josephson, L., Warner, R., Yanagisawa, M., Lechene, C., and Guidotti, G., J. Biol. Chem., 1977, vol. 252, pp. 7421–7423.Google Scholar
  32. 32.
    Strasia, C.A., Vanadium: Essentiality and Toxicity in the Laboratory Rat, Ph. D. Thesis Purdue University, West Lafayette, India, 1971.Google Scholar
  33. 33.
    Hopkins, L.L. and Mohr, H.E., Fed. Proc., 1971, vol. 30, p. 462.Google Scholar
  34. 34.
    Hopkins, L.L. and Mohr, H.E., Fed. Proc. Fed. Am. Soc. Exp. Biol., 1974, vol. 33, pp. 1773–1775.Google Scholar
  35. 35.
    Golden, M.H. and Golden, B.E., Br. Med. Bull., 1981, vol. 37, pp. 31–36.Google Scholar
  36. 36.
    Barceloux, D.G., J. Toxicol. Clin. Toxicol., 1999, vol. 37, pp. 265–278.Google Scholar
  37. 37.
    Soremark, R., Ullberg, S., and Appelgren, L.E., Acta Odontol. Scand., 1962, vol. 20, pp. 225–232.Google Scholar
  38. 38.
    Akera, T., Temma, K., and Takeda, K., Fed. Proc., 1983, vol. 42, pp. 2984–2988.Google Scholar
  39. 39.
    Nechay, B.R., Ann. Rev. Pharmacol. Toxicol., 1984, vol. 24, pp. 501–524.Google Scholar
  40. 40.
    Sakurai, H., Yasui, H., and Adachi, Y., Expert Opin. Invest. Drugs, 2003, vol. 12, pp. 1189–1203.Google Scholar
  41. 41.
    Bosch, F., Arino, J., Gomez-Fox, A.M., and Giunovart, J.J., J. Biol. Chem., 1987, vol. 262, pp. 218–222.Google Scholar
  42. 42.
    Rehder, D., Inorg. Chem. Communications, 2003, vol. 6, pp. 604–617.Google Scholar
  43. 43.
    Sakurai, H. Tsuchiya, K., Nakatsuka, M., et al., J. Endocrinol., 1990, vol. 126, pp. 451–459.Google Scholar
  44. 44.
    Ramanadham, S., Mongold, J.J., Brownsey, R.W., et al., Am. J. Physiol., 1989, vol. 257(3 Pt 2), pp. 904–911.Google Scholar
  45. 45.
    Tunali, S. and Yanardag, R., Pharmacol. Res., 2006, vol. 53, pp. 271–277.Google Scholar
  46. 46.
    Yanardag, R., Bolkent, S., Karabulut-Bulan, O., and Tunali, S., Biol. Trace Elem. Res., 2003, vol. 95, pp. 73–85.Google Scholar
  47. 47.
    Koyuturk, M., Tunali, S., Bolkent, S., and Yanardag, R., Biol. Trace Elem. Res., 2005, vol. 104, pp. 233–247.Google Scholar
  48. 48.
    Cheta, D., Orasanu, G., Nicolaie, T., Iordachescu, D., Buligescu, S., Constantin, C., Hassanain, M., et al., J. Cell. Mol. Med., 2003, vol. 7, pp. 447–454.Google Scholar
  49. 49.
    Bhanot, S., McNeill, J.H., and Bryer-Ash, M., Hypertension, 1994, vol. 23, pp. 308–312.Google Scholar
  50. 50.
    Bhanot, S. and McNeill, J.H., Hypertension, 1994, vol. 24, pp. 625–632.Google Scholar
  51. 51.
    Brichard, S.M., Ongemba, L.N., and Henquin, J.C., Diabetologia, 1992, vol. 35, pp. 522–527.Google Scholar
  52. 52.
    Yuen, V.G., Vera, E., Battell, M.L., Li, W.M., et al., Diab. Res. Clin. Pract., 1999, vol. 43, pp. 9–19.Google Scholar
  53. 53.
    Brichard, S.M., Bailey, C.J., and Henquin, J.C., Diabetes, 1990, vol. 39, p. 1326–1332.Google Scholar
  54. 54.
    Germinario, E., Esposito, A., Midrio, M., Peron, S., Palade, P.T., Betto, R., and Danieli-Betto, D., J. Biomed. Biotechnol., 2002, vol. 2, no. 1, pp. 22–30.Google Scholar
  55. 55.
    Mohammad, A., Sharma, V., and McNeill, J.H., Mol. Cell. Biochem., 2002, vol. 233, pp. 139–143.Google Scholar
  56. 56.
    Xing, J. and Cheung, H.C., Arch. Biochem. Biophys., 1994, vol. 313, pp. 229–234.Google Scholar
  57. 57.
    Pugazhenti, S., Angel, J., and Khandelwal, R., Metabolism, 1991, vol. 40, pp. 941–946.Google Scholar
  58. 58.
    Li, S.H. and McNeill, J.H., Mol. Cell. Biochem., 2001, vol. 217, pp. 121–129.Google Scholar
  59. 59.
    Mosseri, R., Waner, T., Shefi, M., and Meyerovitch, J., Diabetes, 1997, vol. 46, p. 293.Google Scholar
  60. 60.
    Gil, J., Miralpeix, M., Carreras, J., and Bartrons, R., J. Biol. Chem., 1988, vol. 263, pp. 1868–1871.Google Scholar
  61. 61.
    Bollen, M., Miralpeix, M., Ventura, F., Toth, B., Bartrons, R., and Stalmans, W., Biochem. J., 1990, vol. 267, pp. 269–271.Google Scholar
  62. 62.
    Khandelwal, R. and Pugazhenti, S., Mol. Cell. Biochem., 1995, vol. 153, pp. 87–94.Google Scholar
  63. 63.
    Rossetti, L. and Laughlin, M., J. Clin. Invest., 1989, vol. 84, pp. 892–899.Google Scholar
  64. 64.
    Matsuda, M., Mandarino, L., and DeFronzo, R., Metabolism, 1999, vol. 48, pp. 725–731.Google Scholar
  65. 65.
    Brichard, S., Desbuquois, B., and Girard, J., Mol. Cell. Endocrinol., 1993, vol. 91, pp. 91–97.Google Scholar
  66. 66.
    Meyerovitch, J., Farfelsn, Z., Sack, J., and Shechter, Y., J. Biol. Chem., 1987, vol. 262, pp. 6658–6662.Google Scholar
  67. 67.
    Valera, A., Rodriguez-Gil, J., and Bosch, F., J. Clin. Invest., 1993, vol. 92, pp. 4–11.Google Scholar
  68. 68.
    Fantus, G., Kadota, S., Deragon, G., Foster, B., and Posner, B.I., Biochem., 1989, vol. 28, pp. 8864–8871.Google Scholar
  69. 69.
    Tamura, S., Brown, T.A., Dubler, R.E., and Larner, J.A., J. Biol. Chem., 1984, vol. 259, pp. 6650–6658.Google Scholar
  70. 70.
    Brichard, S.M., Ongemba, L.N., Girard, J., and Henquin, J.C., Diabetologia, 1994, vol. 37, pp. 1065–1072.Google Scholar
  71. 71.
    Lu, B. Ennis, D., Lai, R., et al., J. Biol. Chem., 2001, vol. 276, pp. 35589–35598.Google Scholar
  72. 72.
    Conconi, M.T., DeCarlo, E., Vigolo, S., Grandi, C., Bandoli, G., Sicolo, N., Tamagno, G., Parnigotto, P.P., and Nussdorfer, G.G., Horm. Metab. Res., 2003, vol. 35, pp. 402–406.Google Scholar
  73. 73.
    Fantus, I.G., Deragon, G., Lai, R., and Tang, S., Mol. Cell. Biochem., 1995, vol. 153, pp. 103–112.Google Scholar
  74. 74.
    Mehdi, M.Z., Pandey, S.K., Théberge, J.-F., and Srivastava, A.K., Cell Biochem. Biophys., 2006, vol. 44, pp. 73–81.Google Scholar
  75. 75.
    Belyaeva, N.F., Gorodetskii, V.K., Tochilkin, A.I., et al., Vopr. Med. Khim., 2000, vol. 46, pp. 344–360.Google Scholar
  76. 76.
    Thomspson, K. and Orvig, K., J. Chem. Soc., Dalton Trans., 2000, pp. 2885–2892.Google Scholar
  77. 77.
    Nielsen, F.H., in Vanadium and Its Role in Life, Sigel, H. and Sigel, A., Eds., New York-Basel-Hong Kong: Marcel Dekker Inc., 1995, pp. 543–574.Google Scholar
  78. 78.
    Tracey, A.S., Willsky, G.R., and Takeuchi, E.S., in Vanadium Chemistry, Biochemistry, Pharmacology and Practical Applications, Boca Raton, FL: CRC Press, 2007, pp. 181–185.Google Scholar
  79. 79.
    Dimond, E.G., Caravaca, J., and Benchimol, A., Am. J. Clin. Nutr., 1963, vol. 12, pp. 49–53.Google Scholar
  80. 80.
    Fugono, J., Yasui, H., and Sakurai, H., J. Pharm. Pharmacol., 2002, vol. 54, pp. 611–615.Google Scholar
  81. 81.
    Reul, B.A., Amin, S.S., Buchet, J.-P., Ongemba, L.N., Crans, D.C., and Brichard, S.M., Br. J. Pharmacol., 1999, vol. 126, pp. 467–477.Google Scholar
  82. 82.
    Tracey, A.S., in Vanadium: Chemistry, Biochemistry, Pharmacology, and Practical Applications, Tracey, A.S., Willsky, G.R., and Takeuchi, E.G., Eds., CRC Press, 2007, pp. 31–37.Google Scholar
  83. 83.
    Maury, M.R., Coordination Chem. Rev., 2003, vol. 237, pp. 163–181.Google Scholar
  84. 84.
    Sakurai, H., Kojima, Y., Yoshikawa, Y., Kawabe, K., and Yasui, H., Coordination Chem. Rev., 2002, vol. 226, pp. 187–198.Google Scholar
  85. 85.
    Saatchi, K., Thompson, K.H., Patrick, B.O., Pink, M., Yuen, V.G., McNeill, J.H., and Orvig, C., Inorg. Chem., 2005, vol. 44, pp. 2689–2697.Google Scholar
  86. 86.
    Crans, D.C., J. Inorg. Biochem., 2000, vol. 80, pp. 123–131.Google Scholar
  87. 87.
    Adachi, Y., Yoshikawa, Y., Yoshida, J., Kodera, Y., Katoh, A., Takada, J., and Sakurai, H., Biochem. Biophys. Res. Commun., 2006, vol. 345, pp. 945–950.Google Scholar
  88. 88.
    Sakurai, H., Tamura, A., Fugono, J., Yasui, H., and Kiss, T., Coordination Chem. Rev., 2003, vol. 245, pp. 31–37.Google Scholar
  89. 89.
    Sakurai, H., Funakoshi, S., and Adachi, Y., Pure Appl. Chem., 2005, vol. 77, pp. 1629–1640.Google Scholar
  90. 90.
    Sakurai, H., Fujii, K., Watanabe, H., and Tamura, H., Biochem. Biophys. Res. Commun., 1995, vol. 214, pp. 1095–1101.Google Scholar
  91. 91.
    Fujisawa, Y. and Sakurai, H., Chem. Pharm. Bull. (Tokyo), 1999, vol. 47, pp. 1668–1670.Google Scholar
  92. 92.
    Yasui, H., Tamura, A., Takino, T., and Sakurai, H., J. Inorg. Biochem., 2002, vol. 91, pp. 327–328.Google Scholar
  93. 93.
    Fugono, J., Yasui, H., and Sakurai, H., J. Pharm. Pharmacol., 2001, vol. 9, pp. 1247–1255.Google Scholar
  94. 94.
    Xie, M., Xu, G., Li, L., Liu, W., Niu, Y., and Yan, S., Eur. J. Med. Chem., 2007, vol. 42, pp. 817–822.Google Scholar
  95. 95.
    Kawabe, K., Tadokoro, M., Hirotsu, K., Yanagihara, N., and Kojima, Y., Inorg. Chim. Acta, 2000, vol. 305, pp. 172–183.Google Scholar
  96. 96.
    Sakurai, H., Hamada, Y., Shimomura, S., Yamashita, S., and Ishizu, K., Inorg. Chim. Acta, 1980, vol. 46, no. 103, pp. 119–120.Google Scholar
  97. 97.
    Cam, M.C., Cros, G.H., Serrano, J.-J., Lazaro, R., and McNeill, J.H., Diabetes Res. Clin. Practice, 1993, vol. 20, no. 2, pp. 111–121.Google Scholar
  98. 98.
    Sakurai, H., Tamura, A., Fugono, J., Yasui, H., and Kiss, T., Coordination Chem. Rev., 2003, vol. 245, pp. 31–37.Google Scholar
  99. 99.
    Crans, D.C., Baruah, B., and Levinger, N.E., Biomed. Pharmacother., 2006, vol. 60, no. 4, pp. 174–181.Google Scholar
  100. 100.
    Sakurai, H., Inohara, T., Adachi, Y., Kawabe, K., Yasui, H., and Takada, J., Bioorg. Med. Chem. Lett., 2004, vol. 14, pp. 1093–1096.Google Scholar
  101. 101.
    Woo, L.C.Y., Yuen, V.G., Thompson, K.H., McNeill, J.H., and Orvig, C., J. Inorg. Biochem., 1999, vol. 76, pp. 251–257.Google Scholar
  102. 102.
    Bortolini, O. and Conte, V., J. Inorg. Biochem., 2005, vol. 99, pp. 1549–1557.Google Scholar
  103. 103.
    Crans, D.C., Keramidas, A.D., Hoover-Litty, H., et al., J. Am. Chem. Soc., 1997, vol. 119, p. 5447.Google Scholar
  104. 104.
    Willsky, G.R., Chi, L.-H., Godzala, M. III, et al., Coordination Chem. Rev., 2011, vol. 255, pp. 2258–2269.Google Scholar
  105. 105.
    Tracey, A.S., in Vanadium: Chemistry, Biochemistry, Pharmacology, and Practical Applications, Tracey, A.S., Willsky, G.R., and Takeuchi, E.G., Eds., CRC Press, 2007, pp. 41–57.Google Scholar
  106. 106.
    Batty, I.H., Van der Kaay, J., Gray, A., Telfer, J.F., Dixon, M.J.C., and Downes, P., Biochem. J., 2007, vol. 407, pp. 255–266.Google Scholar
  107. 107.
    Melchior, M., Rettig, S.J., Liboiron, B.D., Thompson, K.H., Yuen, V.G., McNeill, J.H., and Orvig, C., Inorg. Chem., 2001, vol. 40, pp. 4686–4690.Google Scholar
  108. 108.
    Goldfine, A.B., Simonson, D.C., Folli, F., et al., J. Clin. Endocrinol. Metab., 1995, vol. 80, pp. 3311–3320.Google Scholar
  109. 109.
    Boden, G., Chen, X., Ruiz, J., et al., Metabolism, 1996, vol. 45, pp. 1130–1135.Google Scholar
  110. 110.
    Halberstam, M., Cohen, N., Shlimovich, P., et al., Diabetes, 1996, vol. 45, pp. 659–666.Google Scholar
  111. 111.
    Cohen, N., Halberstam, M., Shlimovich, P., et al., J. Clin. Invest., 1995, vol. 95, pp. 2501–2509.Google Scholar
  112. 112.
    Vorobieva, N.M., Fedorova, E.V., and Baranova, N.I., Biosfera, 2013, vol. 5, pp. 77–96.Google Scholar
  113. 113.
    Cusi, K., Cukier, S., DeFronzo, R.A., Torres, M., Puchulu, F.M., Pereira, J.C., and Redondo, J.C., J. Clin. Endocrinol. Metab., 2001, vol. 86, pp. 1410–1417.Google Scholar
  114. 114.
    McNell, J. and Orvig, C., US Patent 5866 563, 1999.Google Scholar
  115. 115.
    Mohamad, S., Taha, A., Bamezai, R.N., Basir, S.F., and Baquer, N.Z., Clin. Chim. Acta, 2004, vol. 342, pp. 105–114.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. V. Fedorova
    • 1
  • A. V. Buryakina
    • 1
  • N. M. Vorobieva
    • 1
  • N. I. Baranova
    • 1
  1. 1.Saint-Petersburg State Chemical Pharmaceutical AcademySaint-PetersburgRussia

Personalised recommendations