Study into possible molecular targets of a neuroprotective compound dimebon using a transgenic mouse line

  • T. A. Shelkovnikova
  • A. A. Ustyugov
  • V. S. Kokhan
  • T. V. Tarasova
  • V. K. Medvedeva
  • I. V. Khrytankova
  • S. O. Bachurin
  • N. N. Ninkina


In the present study we have used a transgenic mouse line overexpressing an amyloidogenic protein, gamma-synuclein, in the nervous system to address the effect of dimebon on proteinopathy progression. Chronic dimebon administration increased lifespan in these transgenic mice, furthermore, using histological and biochemical approaches we have demonstrated that dimebon reduced the number of amyloid inclusions in the spinal cord of transgenic animals and decreased the content of ubiquitinated proteins in the detergent-insoluble fraction of the spinal cord. These effects are likely to occur at the level of aggregated protein species, since transgene expression remained unaltered during dimebon administration. Thus, pathological protein aggregation serves as one of dimebon targets in neurodegeneration.


neurodegeneration neuroprotection protein aggregation transgenic models dimebon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Skovronsky, D.M., Lee, V.M., and Trojanowski, J.Q., Annu. Rev. Pathol., 2006, vol. 1, pp. 151–170.CrossRefGoogle Scholar
  2. 2.
    Shelkovnikova, T.A., Kulikova, A.A., Tsvetkov, F.O., Peters, O., Bachurin, S.O., Buchman V.L., and Ninkina, N.N., Mol. Biol. (Moscow), vol. 43, pp. 402–415.Google Scholar
  3. 3.
    Imbimbo, B.P. and Giardina, G.A., Curr. Top. Med. Chem., 2011, vol. 11, pp. 1555–1570.CrossRefGoogle Scholar
  4. 4.
    Hüll, M., Berger, M., and Heneka, M., Drugs, 2006, vol. 66, pp. 2075–2093.CrossRefGoogle Scholar
  5. 5.
    Martinez-Vicente, M. and Cuervo, M.A., Lancet Neurol., 2007, vol. 6, pp. 352–261.CrossRefGoogle Scholar
  6. 6.
    Huang, Q. and Figueiredo-Pereira, M.E., Apoptosis, 2010, vol. 15, pp. 1292–1311.CrossRefGoogle Scholar
  7. 7.
    Nedelsky, N., Todd, P.K., and Taylor, J.P., Biochim. Biophys. Acta, 2008, vol. 1782, pp. 691–699.CrossRefGoogle Scholar
  8. 8.
    Pieper, A.A., Xie, S., Capota, E. Estill, S.J., Zhong, J., Long, J.M., Becker, G.L., Huntington, P., Goldman, S.E., Shen, C.H., Capota, M., Britt, J.K., Kotti, T., Ure, K., Brat, D.J., Williams, N.S., Mac-Millan, K.S., Naidoo, J., Melito, L., Hsieh, J., De Brabander, J., Ready, J.M., and McKnight, S.L., Cell, 2010, vol. 142, pp. 39–51.CrossRefGoogle Scholar
  9. 9.
    MacMillan, K.S., Naidoo, J., Liang, J., Melito, L., Williams, N.S., Morlock, L., Huntington, P.J., Estill, S.J., Longgood, J., Becker, G.L., McKnight, S.L., Pieper, A.A., De Brabander, J.K., and Ready, J.M., J. Amer. Chem. Soc., 2011, vol. 133, pp. 1428–1437.CrossRefGoogle Scholar
  10. 10.
    Vignisse, J., Steinbusch, H.W., Bolkunov, A., Nunes, J., Santos, A.I., Grandfils, C., Bachurin, S., and Strekalova, T., Progr. Neuropsychopharmacol. Biol. Psychiatry, 2011, vol. 35, pp. 510–522.CrossRefGoogle Scholar
  11. 11.
    Webster, S.J., Wilson, C.A., Lee, C.H., Mohler, E.G., Terry, A.V., Jr., and Buccafusco, J.J., Br. J. Pharmacol., 2011, vol. 164, pp. 970–978.CrossRefGoogle Scholar
  12. 12.
    Bachurin, S., Bukatina, E., Lermontova, N., Tkachenko, S., Afanasiev, A., Grigoriev, V., Grigorieva, I., Ivanov, Y., Sablin, S., and Zefirov, N., Ann. NY Acad. Sci., 2001, vol. 939, pp. 425–435.CrossRefGoogle Scholar
  13. 13.
    Bachurin, S.O., Shevtsova, E.P., Kireeva, E.G., Oxenkrug, G.F., and Sablin, S.O., Ann. NY Acad. Sci., 2003, vol. 993, pp. 334–344.CrossRefGoogle Scholar
  14. 14.
    Zhang, S., Hedskog, L., Petersen, C.A., Winblad, B., and Ankarcrona, A., J. Alzheimers Dis., 2010, vol. 21, pp. 389–402.Google Scholar
  15. 15.
    Naga, K.K. and Geddes, J.W., Neuromolecular. Med., 2011, vol. 13, pp. 31–36.CrossRefGoogle Scholar
  16. 16.
    Grigorev, V.V., Dranyi, O.A., and Bachurin, S.O., Bull. Exp. Biol. Med., 2003, vol. 136, pp. 474–477.CrossRefGoogle Scholar
  17. 17.
    Lermontova, N.N., Redkozubova, A.E., Shevtsova, E.F., Serkova, T.P., Kireeva, E.G., and Bachurin, S.O., Bull. Exp. Biol. Med., 2001, vol. 132, pp. 1079–1083.CrossRefGoogle Scholar
  18. 18.
    Okun, I., Tkachenko, S.E., Khvat, A., Mitkin, O., Kazey, V., and Ivachtchenko, A.V., Curr. Alzheimer Res., 2010, vol. 7, pp. 97–112.CrossRefGoogle Scholar
  19. 19.
    Wu, J., Li, Q., and Bezprozvanny, I., Mol. Neurodegener., 2008, vol. 3, p. 15CrossRefGoogle Scholar
  20. 20.
    Yamashita, M., Nonaka, T., Arai, T., Kametani, F., Buchman, V.L., Ninkina, N., Bachurin, S.O., Akiyama, H., Goedert, M., and Hasegawa, M., FEBS Lett., 2009, vol. 583, pp. 2419–2424.CrossRefGoogle Scholar
  21. 21.
    Bachurin, S.O., Ustyugov, A.A., Peters, O., Shelkovnikova, T.A., Buchman V.L., and Ninkina, N.N., Dokl. Rus. Akad. Nauk, 2009, vol. 428, pp. 262–265.Google Scholar
  22. 22.
    Buchman, V.L., Adu, J., Pinon, L.G., Ninkina, N.N., and Davies, A.M., Nat. Neurosci., 1998, vol. 1, pp. 101–103.CrossRefGoogle Scholar
  23. 23.
    Ninkina, N., Peters, O., Millership, S., Salem, H., van der Putten, H., and Buchman, V.L., Hum. Mol. Genet., 2009, vol. 18, pp. 1779–1794.CrossRefGoogle Scholar
  24. 24.
    Thal, D.R., Röb, U., Orantes, M., and Braak, H., Neurology, 2002, vol. 58, pp. 1791–1800.CrossRefGoogle Scholar
  25. 25.
    Ninkina, N.N., Baka, I.D., and Buchman, V.L., Gene, 2002, vol. 184, pp. 205–210.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • T. A. Shelkovnikova
    • 1
  • A. A. Ustyugov
    • 1
  • V. S. Kokhan
    • 1
  • T. V. Tarasova
    • 1
  • V. K. Medvedeva
    • 2
  • I. V. Khrytankova
    • 1
  • S. O. Bachurin
    • 1
  • N. N. Ninkina
    • 1
    • 3
  1. 1.Institute of Physiologically Active Compounds of the Russian Academy of SciencesChernogolovkaRussia
  2. 2.Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical SciencesMoscowRussia
  3. 3.BIOSI3Cardiff UniversityCardiffUK

Personalised recommendations