L-Cysteine influx in type 2 diabetic erythrocytes

Clinical Studies
  • 40 Downloads

Abstract

Erythrocyte oxidative stress has been implicated in the pathogenesis of diabetes mellitus, and the deficiency of antioxidant defense by the glutathione (GSH) pathway is thought to be one of the factors responsible for development of complications in diabetes. Erythrocytes require L-cysteine for the synthesis of GSH and the rate of synthesis is determined only by L-cysteine availability. In the present study we have found that the L-cysteine influx in erythrocytes from type 2 diabetic patients was significantly lower compared to age-matched controls. The decreased influx may be one of the factors leading to low GSH concentration observed in type 2 diabetes. Since L-cysteine is the limiting amino acid in GSH synthesis, any strategy aimed to increase L-cysteine influx in erythrocytes may be beneficial for type 2 diabetic patients.

Key words

Erythrocytes L-cysteine diabetes mellitus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Halliwell, B., and Gutteridge, J.M.C., Arch. Biochem. Biophys., 1986, vol. 246, pp. 501–514.CrossRefGoogle Scholar
  2. 2.
    Maridonneau, I., Barquet, P., and Garay, R.P., J. Biol. Chem, 1983, vol. 258, pp. 3107–3113.Google Scholar
  3. 3.
    Rohan, T.T., Nelson, L.K., Waeg, G., and Quinn, M.T., Biochem. Pharmacol., 1998, vol. 56, pp. 1371–1379.CrossRefGoogle Scholar
  4. 4.
    Snyder, L.M., Fortier, N.L., Leb, L., McKenney, J., Trainor, J., Sheerin, H., and Mohandas, N., Biochim. Biophys. Acta, 1988, vol. 937, pp. 229–240.CrossRefGoogle Scholar
  5. 5.
    Cakatay, U., Kayali, R., Erdogan, C., Orhan, Y., Sivas, A., and Akcay, T., Horm. Metab. Res, 2000, vol. 32, pp. 40–43.CrossRefGoogle Scholar
  6. 6.
    Davies, K.J.A., and Goldberg, A.L., J. Biol. Chem., 1987, vol. 262, pp. 8220–8226.Google Scholar
  7. 7.
    Bryszewska, M., Zavodnik, I.B., Niekurzak, A., and Szosland, K., Biochem. Mol. Biol. Int., 1995, vol. 37, pp. 345–354.Google Scholar
  8. 8.
    Saltsburg, H., Katter, Y., Aviary, M., and Levy, Y., Isr. Med. Assoc. J., 1999, vol. 1, pp. 228–231.Google Scholar
  9. 9.
    Vijayalingam, S., Parthiban, A., Shanmugasundaram, K.R., and Mohan, V., Diabet. Med., 1996, vol. 13, pp. 715–719.CrossRefGoogle Scholar
  10. 10.
    Maritim, A., Sanders, R., and Watkins, J., J. Biochem. Mol. Toxicol., 2003, vol. 17, pp. 24–38.CrossRefGoogle Scholar
  11. 11.
    Nwose, E.U., Jelinek, H.F., Richards, R.S., and Kerr, P.G., Br. J. Biomedical. Sci., 2007, vol. 64, pp. 35–43.Google Scholar
  12. 12.
    Dincer, Y., Akcay, T., Alademir, Z., and Ilkova, H., Metabolism, 2002, vol. 51, pp. 1360.CrossRefGoogle Scholar
  13. 13.
    Rizvi, S.I., Zaid, M.A., Anis, R., and Mishra, N., Clin. Exp. Pharmacol. Physiol., 2005, vol. 32, pp. 70–75.CrossRefGoogle Scholar
  14. 14.
    Nwose, E.U., Jelinek, H.F., Richards, R.S., and Kerr, P.G., Redox Rep., 2006, vol. 11, pp. 99–104.CrossRefGoogle Scholar
  15. 15.
    Yildiz, D., Uslu, C., Cakir, Y., and Oztas, H., Free Radic. Res., 2006, vol. 40, 507-512.Google Scholar
  16. 16.
    Griffith, O.W., Free Radic. Biol. Med., 1992, vol. 27, pp. 922–935.CrossRefGoogle Scholar
  17. 17.
    Rizvi, S.I., and Zaid, M.A., Clin. Chim. Acta, 2005, vol. 354, pp. 59–67.CrossRefGoogle Scholar
  18. 18.
    Rizvi, S.I., and Maurya, P.K., Rejuvination Research, 2008, vol. 11, pp. 661–665.CrossRefGoogle Scholar
  19. 19.
    Sedlak, J., and Lindsay, R.H., Anal. Biochem., 1963, vol. 25, pp. 192–205.CrossRefGoogle Scholar
  20. 20.
    Benzie, I.F.F., and Strain, J.J., Anal Biochem., 1996, vol. 239, pp. 70–76.CrossRefGoogle Scholar
  21. 21.
    Beutler, E., Duron, O., and Durate, B.M.K., J. Lab.Clin. Med., 1963, vol. 51, pp. 882–888.Google Scholar
  22. 22.
    Rizvi, S.I., and Abu Zaid, M., J. Physiol. Pharmacol., 2001, vol. 52, pp. 483–488.Google Scholar
  23. 23.
    Dincer, Y., Alademir, Z., Iikova, H., and Akcay, T., Clin. Biochem., 2002, vol. 35, pp. 297–301.CrossRefGoogle Scholar
  24. 24.
    Coleman, M.D., and Rustiom, C.V., J. Pharm. Pharmacol., 1999, vol. 51, pp. 21–25.CrossRefGoogle Scholar
  25. 25.
    Breitkreutz, R., Pittack, N., Nebe, C.T., Schuster, D., Brust, J., Beichert, M., Hack, V., Daniel, V., Edler, L., and Droge, W., J. Mol. Med., 2000, vol. 78, pp. 55–62.CrossRefGoogle Scholar
  26. 26.
    Sen, C.K. and Packer, L., Am. J. Clin. Nutr., 2000, vol. 72, pp. 653S–669S.Google Scholar
  27. 27.
    Badaloo, A., Reid, M., Forrester, T., Heird, W.C., and Jahoor, F., Am. J Clin. Nutr., 2002, vol. 76, pp. 646–652.Google Scholar
  28. 28.
    Reid, M., Badaloo, A., Forerester, T., Morlese, J.F., Frazer, M., Heird, W.C., and Jahoor, F., Am. J. Physiol., 2000, vol. 278, pp. E405–412.Google Scholar
  29. 29.
    Sugherini, L., Valentini, M., Cambiaggi, C., Tanganelli, I., Gragnoli, G., Borgogni, P., Comporti, M., and Pompella, A., Clin Chem. Lab. Med., 2000, vol. 38, pp. 983–987.CrossRefGoogle Scholar
  30. 30.
    Cakatay, U. and Kayali, R., Clin. Biochem., 2006, vol. 39, pp. 907–912.CrossRefGoogle Scholar
  31. 31.
    Blouet, C., Mariotti, F., Azzout-Marniche, D., Mathe, V., Mikogami, T., Tome, D., and Hunneau, J.F., Free Radic. Biol. Med., 2007, vol. 42, pp. 1089–1097.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of AllahabadAllahabadIndia

Personalised recommendations