Advertisement

The study of ubiquitin-dependent increase in monoamine oxidase sensitivity to proteolysis and specific inhibitor, pargyline

  • O. A. Buneeva
  • M. V. Medvedeva
  • A. E. Medvedev
Experimental Studies

Abstract

Insertion of exogenous ubiquitin into rat brain mitochondria in the presence of ATP and the ATPregenerating system (creatine phosphate/creatine phosphokinase) results in the increase in: sensitivity of mitochondrial monoamine oxidases (MAO) A and B to inhibition by mechanism based inhibitor and incorporation of [3H]-pargyline, which was especially notable in the fraction obtained by immunoprecipitation of mitochondrial proteins with anti-ubiquitin antiserum and protein A Sepharose. This suggests that MAO is a potential substrate for ubiquitination in vitro. However, the content of the tritium label in this fraction was less than 0.1 % and not more than 0.25% of total radioactivity of [3H]-pargyline bound to control and ATP-ubiquitin treated mitochondria, respectively. Insertion of ubiquitin into mitochondria did not influence molecular masses of [3H]-pargyline labeled proteins. These results suggest that direct ubiquitination of MAO insignificantly contributes to marked changes in the sensitivity of MAO A and MAO B to proteolysis and specific inhibition found under these experimental conditions. It is possible that more complex processes are involved into realization of these effects during ATP-dependent ubiquitin incorporation into mitochondria.

Keywords

monoamine oxidase ubiquitin proteolytic degradation rat brain mitochondria pargyline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciechanover, A., Orian, A., and Schwartz, A.L., Bioessays, 2000, vol. 22, pp. 442–451.CrossRefGoogle Scholar
  2. 2.
    Buneeva, O.A. and Medvedev, A.E., Biochemistry (Moscow), 2006, vol. 71, pp. 851–860.Google Scholar
  3. 3.
    Ciechanover, A., Biol. Chem. Hoppe-Seyler, 1994, vol. 375, pp. 565–581.Google Scholar
  4. 4.
    Hershko, A., (2005) Cell Death Differ., 2005, vol. 12, pp. 1191–1197.CrossRefGoogle Scholar
  5. 5.
    Welchman, R.L., Gordon, C., and Mayer, R.J., Nat. Rev. Mol. Cell Biol., 2005, vol. 6, pp. 599–609.CrossRefGoogle Scholar
  6. 6.
    Varshavsky, A., Trends Biochem. Sci., 2005, vol. 30, pp. 283–286.CrossRefGoogle Scholar
  7. 7.
    Sherman, M.Y. and Goldberg, A.L., Neuron, 2001, vol. 29, pp. 15–32.CrossRefGoogle Scholar
  8. 8.
    Adamo, A.M., Pasquini, L.A., Moreno, M.B., Oteiza, P.I., Soto, E.F., and Pasquini, J.M., J. Neurosci. Res., 1999, vol. 55, pp. 523–531.CrossRefGoogle Scholar
  9. 9.
    Mangani, M., Serafini, G., Antonelli, A., Malatesta, M., and Gazzanelli, G., J. Biol. Chem., 1991, vol. 266, pp. 21018–21024.Google Scholar
  10. 10.
    Buneeva, O.A., Medvedeva, M.V., and Medvedev, A.E., Neurobiology, 1999, vol. 7, pp. 257–261.Google Scholar
  11. 11.
    Buneeva, O.A., Medvedeva, M.V., and Medvedev, A.E., Biomed. Khim., 2007, vol. 53, pp. 603–608Google Scholar
  12. 12.
    Abell, C.W. and Kwan, S.W., Progr. Nucleic Acid Res. Mol. Biol., 2001, vol. 65, pp. 129–156.CrossRefGoogle Scholar
  13. 13.
    Shih, J.C., Chen, K., and Ridd, M.J., Annu. Rev. Neurosci., 1999, vol. 22, pp. 197–217.CrossRefGoogle Scholar
  14. 14.
    Zhuang, Z., and McCauley, R., J. Biol. Chem., 1989, vol. 264, pp. 14594–14596.Google Scholar
  15. 15.
    Zhuang, Z., Marks, B., and McCauley, R., J. Biol. Chem., 1992, vol. 267, pp. 591–596.Google Scholar
  16. 16.
    Medvedev, A.E., and Gorkin, V.Z., Int. J. Devel. Neurosci., 1994, vol. 12, pp. 151–155.CrossRefGoogle Scholar
  17. 17.
    Medvedev, A.E., Kirkel, A., Kamyshanskaya, N., and Gorkin, V., Int. J. Biochem., 1993, vol. 25, pp. 1791–1799.CrossRefGoogle Scholar
  18. 18.
    Medvedev, A.E., and Tipton, K.F., Vopr. Med. Khim, 1997, vol. 43, pp. 471–481.Google Scholar
  19. 19.
    Anderson, M.C. and Tipton, K.F., J. Neural Transm. Suppl., vol. 41, pp. 47–53.Google Scholar
  20. 20.
    Anker, H.S., (1970) FEBS Lett., 1970, vol. 7, p. 293.CrossRefGoogle Scholar
  21. 21.
    Weber, K., and Osborn, M., J. Biol. Chem., 1969, vol. 244, pp. 4406–4412.Google Scholar
  22. 22.
    Spath, P.J. and Koblet, H., Anal. Biochem., 1979, vol. 93, pp. 275–285.CrossRefGoogle Scholar
  23. 23.
    Spector, T., Anal. Biochem., 1978, vol. 86, pp. 142–146.CrossRefGoogle Scholar
  24. 24.
    Anderson, L.E. and McClure, W.O., (1973) Anal. Biochem., 1973, vol. 51, pp. 173–179.CrossRefGoogle Scholar
  25. 25.
    Medvedev, A.E., Kirkel, A.Z., Kamyshanskaya, N.S., Axenova, L.N., Moskvitina, T.A., Gorkin, V.Z., Andreeva, N.I., Golovina, S.M., and Mashkovsky, M.D., Biochem. Pharmacol., 1994, vol. 47, pp. 303–308.CrossRefGoogle Scholar
  26. 26.
    Callingham, B.A. and Parkinson, D., in Monoamine Oxidase: Structure, Function, and Altered Functions, Singer, T.P, Von Korff, R.W., and Murphy, D.L., Eds., New York: Academic Press, 1979, pp. 81–86.Google Scholar
  27. 27.
    Nyborg, A.C., Kornilova, A.Y., Jansen, K., Ladd, Th.B, Wolfe, M.S., and Golde, T.E., J. Biol. Chem., 2004, vol. 279, pp. 15153–15160.CrossRefGoogle Scholar
  28. 28.
    Grohmann, U., Orabona, C., Bianchi, R., Belladonna, M.L., Fioretti, M.C., and Puccetti, P., Cytokine, 2000, vol. 12, pp. 401–404.CrossRefGoogle Scholar
  29. 29.
    Yonashiro, R., Ishido, S., Kyo, S., Fukuda, T., Goto, E., Matsuki, Y., Ohmura-Hoshino, M., Sada, K., Hotta, H., Yamamura, H., Inatome, R., and Yanagi, S., EMBO J., 2006, vol. 25, pp. 3618–3626.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • O. A. Buneeva
    • 1
  • M. V. Medvedeva
    • 2
  • A. E. Medvedev
    • 1
  1. 1.Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia
  2. 2.School of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations