Advertisement

Mass spectrometry methods in metabolomics

Metabolomic

Abstract

The review deals with metabolomics, a new and rapidly growing area directed to the comprehensive analysis of metabolites of biological objects. Metabolites are characterized by various physical and chemical properties, traditionally studied by methods of analytical chemistry focused on certain groups of chemical substances. However, current progress in mass spectrometry has led to formation of rather unified methods, such as metabolic fingerprinting and metabolomic profiling, which allow defining thousands of metabolites in one biological sample and therefore draw “a modern portrait of metabolomics.” This review describes basic characteristics of these methods, ways of metabolite separation, and analysis of metabolites by mass spectrometry. The examples shown in this review, allow to estimate these methods and to compare their advantages and disadvantages. Besides that, we consider the methods, which are of the most frequent use in metabolomics; these include the methods for data processing and the required resources, such as software for mass spectra processing and metabolite search database. In the conclusion, general suggestions for successful metabolomic experiments are given.

Key words

metabolomics metabolic fingerprinting metabolic profiling mass spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vigneau-Callahan, K.E., Shestopalov, A.I., Milbury, P.E., Matson, W.R., and Kristal, B.S., J. Nutr., 2001, vol. 131, pp. 924–932.Google Scholar
  2. 2.
    Bino, R.J., Hall, R.D., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B.J., Mendes, P., Roessner-Tunali, U., Beale, M.H., Trethewey, R.N., Lange, B.M., Wurtele, E.S., and Sumner, L.W., Trends Plant Sci., 2004, vol. 9, pp. 418–425.CrossRefGoogle Scholar
  3. 3.
    Beecher, C.W.W., in: Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis, George, G. and Harrigan, R.G., Eds., New York: Springer, 2003 pp. 311–335.Google Scholar
  4. 4.
    Weckwerth, W., Annu. Rev. Plant. Biol., 2003, vol. 54, pp. 669–689.CrossRefGoogle Scholar
  5. 5.
    Dettmer, K. and Hammock, B.D., Environ. Health Perspect., 2004, vol. 112, pp. 396–397.Google Scholar
  6. 6.
    Smedsgaard, J. and Frisvad, J.C., J. Microbiol. Meth., 1996, vol. 25, pp. 5–17.CrossRefGoogle Scholar
  7. 7.
    Smedsgaard, J. and Frisvad, J.C., Biochem. Syst. Ecol., 1997, vol. 25, pp. 51–64.CrossRefGoogle Scholar
  8. 8.
    Castrillo, J.I., Hayes, A., Mohammed, S., Gaskell, S.J., and Oliver, S.G., Phytochemistry, 2003, vol. 62, pp. 929–937.CrossRefGoogle Scholar
  9. 9.
    Allen, J., Davey, H.M., Broadhurst, D., Heald, J.K., Rowland, J.J., Oliver, S.G., and Kell, D.B., Nat. Biotechnol., 2003, vol. 21, pp. 692–696.CrossRefGoogle Scholar
  10. 10.
    Allen, J., Davey, H.M., Broadhurst, D., Rowland, J.J., Oliver, S.G., and Kell, D.B., Appl. Environ. Microbiol., 2004, vol. 70, pp. 6157–6165.CrossRefGoogle Scholar
  11. 11.
    Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., and Selbig, J., Bioinformatics, 2004, vol. 20, pp. 2447–2454.CrossRefGoogle Scholar
  12. 12.
    Vaidyanathan, S., Kell, D.B., and Goodacre, R., J. Am. Soc. Mass Spectrom., 2002, vol. 13, pp. 118–128.CrossRefGoogle Scholar
  13. 13.
    Marshall, A.G., Hendrickson, C.L., and Jackson, G.S., Mass Spectrom. Rev., 1998, vol. 17, pp. 1–35.CrossRefGoogle Scholar
  14. 14.
    Brown, S.C., Kruppa, G., and Dasseux, J.L., Mass Spectrom. Rev., 2005, vol. 24, pp. 223–231.CrossRefGoogle Scholar
  15. 15.
    Aharoni, A., Ric de Vos, C.H., Verhoeven, H.A., Maliepaard, C.A., Kruppa, G., Bino, R., and Goodenowe, D.B., Omics, 2002, vol. 6, pp. 217–234.CrossRefGoogle Scholar
  16. 16.
    Hirai, M.Y., Yano, M., Goodenowe, D.B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T., and Saito, K., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 10205–10210.CrossRefGoogle Scholar
  17. 17.
    Tolstikov, V.V., Lommen, A., Nakanishi, K., Tanaka, N., and Fiehn, O., Anal. Chem., 2003, vol. 75, pp. 6737–6740.CrossRefGoogle Scholar
  18. 18.
    De Vos, R.C., Moco, S., Lommen, A., Keurentjes, J.J., Bino, R.J., and Hall, R.D., Nature Protocols, 2007, vol. 2, pp. 778–791.CrossRefGoogle Scholar
  19. 19.
    Wilson, I.D., Nicholson, J.K., Castro-Perez, J., Granger, J.H., Johnson, K.A., Smith, B.W., and Plumb, R.S., J. Proteome Res., 2005, vol. 4, pp. 591–598.CrossRefGoogle Scholar
  20. 20.
    Wilson, I.D., Plumb, R., Granger, J., Major, H., Williams, R, and Lenz, E.M., J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, vol. 817, pp. 67–76.CrossRefGoogle Scholar
  21. 21.
    Roy, S.M. and Becker, C.H., Methods Mol. Biol., 2007, vol. 359, pp. 87–105.CrossRefGoogle Scholar
  22. 22.
    Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T.A., Hill, L.R., Norton, S., Kumar, P., Anderle, M., and Becker, C.H., Anal. Chem., 2003, vol. 75, pp. 4818–4826.CrossRefGoogle Scholar
  23. 23.
    Tolstikov, V.V. and Fiehn, O., Anal. Biochem., 2002, vol. 301, pp. 298–307.CrossRefGoogle Scholar
  24. 24.
    Tolstikov, V.V., Fiehn, O., and Tanaka, N., Methods Mol. Biol., 2007, vol. 358, pp. 141–155.CrossRefGoogle Scholar
  25. 25.
    Naidong, W., J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, vol. 796, pp. 209–224.CrossRefGoogle Scholar
  26. 26.
    Lafaye, A., Junot, C., Ramounet-Le Gall, B., Fritsch, P., Tabet, J.C., and Ezan, E., Rapid Commun. Mass Spectrom., 2003, vol. 17, pp. 2541–2549.CrossRefGoogle Scholar
  27. 27.
    Idborg-Bjorkman, H., Edlund, P.O., Kvalheim, O.M., Schuppe-Koistinen, I., and Jacobsson, S.P., Anal. Chem., 2003, vol. 75, pp. 4784–4792.CrossRefGoogle Scholar
  28. 28.
    Plumb, R., Granger, J., Stumpf, C., Wilson, I.D., Evans, J.A., and Lenz, E.M., Analyst., 2003, vol. 128, pp. 819–823.CrossRefGoogle Scholar
  29. 29.
    Plumb, R.S., Stumpf, C.L., Granger, J.H., Castro-Perez, J., Haselden, J.N., and Dear, G.J., Rapid Commun. Mass Spectrom., 2003, vol. 17, pp. 2632–2638.CrossRefGoogle Scholar
  30. 30.
    Williams, R.E., Major, H., Lock, E.A., Lenz, E.M., and Wilson, I.D., Toxicology, 2005, vol. 207, pp. 179–190.CrossRefGoogle Scholar
  31. 31.
    Lenz, E.M., Bright, J., Knight, R., Wilson, I.D., and Major, H., Analyst., 2004, vol. 129, pp. 535–541.CrossRefGoogle Scholar
  32. 32.
    Lenz, E.M., Bright, J., Knight, R., Wilson, I.D., and Major, H., J. Pharm. Biomed. Anal., 2004, vol. 35, pp. 599–608.CrossRefGoogle Scholar
  33. 33.
    Nielsen, K.F. and Smedsgaard, J., J. Chromatogr. A, 2003, vol. 1002, pp. 111–136.CrossRefGoogle Scholar
  34. 34.
    Colebatch, G., Desbrosses, G., Ott, T., Krusell, L., Montanari, O., Kloska, S., Kopka, J., and Udvardi, M.K., Plant J., 2004, vol. 39, pp. 487–512.CrossRefGoogle Scholar
  35. 35.
    Jonsson, P., Gullberg, J., Nordstrom, A., Kusano, M., Kowalczyk, M., Sjostrom, M., and Moritz, T., Anal. Chem., 2004, vol. 76, pp. 1738–1745.CrossRefGoogle Scholar
  36. 36.
    Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N., and Willmitzer, L., Plant J., 2000, vol. 23, pp. 131–142.CrossRefGoogle Scholar
  37. 37.
    Fu, X., Iga, M., Kimura, M., and Yamaguchi, S., Early Hum. Dev., 2000, vol. 58, pp. 41–55.CrossRefGoogle Scholar
  38. 38.
    Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., and Fernie, A., Plant Cell, 2001, vol. 13, pp. 11–29.CrossRefGoogle Scholar
  39. 39.
    Roessner, U., Willmitzer, L., and Fernie, A.R., Plant Physiol., 2001, vol. 127, pp. 749–764.CrossRefGoogle Scholar
  40. 40.
    Winder, C.L., Dunn, W.B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G.M., and Goodacre, R., Anal. Chem., 2008, vol. 80, pp. 2939–2948.CrossRefGoogle Scholar
  41. 41.
    O’Hagan, S., Dunn, W.B., Brown, M., Knowles, J.D., and Kell, D.B., Anal. Chem., 2005, vol. 77, pp. 290–303.CrossRefGoogle Scholar
  42. 42.
    Jiye, A., Trygg, J., Gullberg, J., Johansson, A.I., Jonsson, P., Antti, H., Marklund, S.L., and Moritz, T., Anal. Chem., 2005, vol. 77, pp. 8086–8094.CrossRefGoogle Scholar
  43. 43.
    Watson, N.E., Vanwingerden, M.M., Pierce, K.M., Wright, B.W., and Synovec, R.E., J. Chromatogr, A., 2006, vol. 1129, pp. 111–118.CrossRefGoogle Scholar
  44. 44.
    Dalluge, J., Beens, J., and Brinkman, U.A.T., J. Chromatogr. A, 2003, vol. 1000, pp. 69–108.CrossRefGoogle Scholar
  45. 45.
    Welthagen, W. and Shellie, R.A., Metabolomics, 2005, vol. 1, pp. 65–73.CrossRefGoogle Scholar
  46. 46.
    Adahchour, M., Brandt, M., Baier, H.U., Vreuls, R.J., Batenburg, A.M., and Brinkman, U.A., J. Chromatogr. A, 2005, vol. 1067, pp. 245–254.CrossRefGoogle Scholar
  47. 47.
    Guo, X. and Lidstrom, M.E., Biotechnol. Bioeng., 2008, vol. 99, pp. 929–940.CrossRefGoogle Scholar
  48. 48.
    Monton, M.R. and Soga, T., J. Chromatogr. A, 2007, vol. 1168(1–2), pp. 237–246.CrossRefGoogle Scholar
  49. 49.
    Klampfl, C.W., J. Chromatogr. A, 2004, vol. 1044, pp. 131–144.CrossRefGoogle Scholar
  50. 50.
    Kuhara, T., Mass Spectrom. Rev., 2005, vol. 24, pp. 814–827.CrossRefGoogle Scholar
  51. 51.
    Piraud, M., Vianey-Saban, C., Petritis, K., Elfakir, C., Steghens, J.P., Morla, A., and Bouchu, D., Rapid Commun. Mass Spectrom., 2003, vol. 17, pp. 1297–1311.CrossRefGoogle Scholar
  52. 52.
    Schulze, A., Lindner, M., Kohlmuller, D., Olgemoller, K., Mayatepek, E., and Hoffmann, G.F., Pediatrics, 2003, vol. 111, pp. 1399–1406.CrossRefGoogle Scholar
  53. 53.
    Chace, D.H., Kalas, T.A., and Naylor, E.W., Clin. Chem., 2003, vol. 49, pp. 1797–1817.CrossRefGoogle Scholar
  54. 54.
    Chace, D.H., Kalas, T.A., and Naylor, E.W., Annu. Rev. Genomics Hum. Genet., 2002, vol. 3, pp. 17–45.CrossRefGoogle Scholar
  55. 55.
    Chace, D.H. and Kalas, T.A., Clin. Biochem., 2005, vol. 38, pp. 296–309.CrossRefGoogle Scholar
  56. 56.
    Watkins, S.M., Reifsnyder, P.R., Pan, H.J., German, J.B., and Leiter, E.H., J. Lipid Res., 2002, vol. 43, pp. 1809–1817.CrossRefGoogle Scholar
  57. 57.
    German, J.B., Roberts, M.A., and Watkins, S.M., J. Nutr., 2003, vol. 133, pp. 2078–2083.Google Scholar
  58. 58.
    Snyder, A.P., McClennen, W.H., Dworzanski, J.P., and Meuzelaar, H.L., Anal. Chem., 1990, vol. 62, pp. 2565–2573.CrossRefGoogle Scholar
  59. 59.
    Hermansson, M., Uphoff, A., Kakela, R., and Somerharju, P., Anal. Chem., 2005, vol. 77, pp. 2166–2175.CrossRefGoogle Scholar
  60. 60.
    Han, X. and Gross, R.W., J. Lipid Res., 2003, vol. 44, pp. 1071–1079.CrossRefGoogle Scholar
  61. 61.
    Han, X. and Gross, R.W., Mass Spectrom. Rev., 2005, vol. 24, pp. 367–412.CrossRefGoogle Scholar
  62. 62.
    Hsu, F.F. and Turk, J., J. Am. Soc. Mass Spectrom., 1999, vol. 10, pp. 587–599.CrossRefGoogle Scholar
  63. 63.
    Duffin, K.L., Henion, J.D., and Shieh, J.J., Anal. Chem., 1991, vol. 63, pp. 1781–1788.CrossRefGoogle Scholar
  64. 64.
    Pulfer, M. and Murphy, R.C., Mass Spectrom. Rev., 2003, vol. 22, pp. 332–364.CrossRefGoogle Scholar
  65. 65.
    Griffiths, W.J., Jonsson, A.P., Liu, S., Rai, D.K., and Wang, Y., Biochem J., 2001, vol. 355, pp. 545–561.Google Scholar
  66. 66.
    Jonsson, P., Bruce, S.J., Moritz, T., Trygg, J., Sjostrom, M., Plumb, R., Granger, J., Maibaum, E., Nicholson, J.K., Holmes, E., and Antti, H., Analyst., 2005, vol. 130, pp. 701–707.CrossRefGoogle Scholar
  67. 67.
    Smilde, A.K., Jansen, J.J., Hoefsloot, H.C., Lamers, R.J., van der Greef, J., and Timmerman, M.E., Bioinformatics, 2005, vol. 21, pp. 3043–3048.CrossRefGoogle Scholar
  68. 68.
    Chang, W.T., Thissen, U., Ehlert, K.A., Koek, M.M., Jellema, R.H., Hankemeier, T., van der Greef, J., and Wang, M., Planta Med., 2006, vol. 72, pp. 458–467.CrossRefGoogle Scholar
  69. 69.
    Vis, D.J., Westerhuis, J.A., Smilde, A.K., and van der Greef, J., BMC Bioinformatics, 2007, vol. 8, p. 322.CrossRefGoogle Scholar
  70. 70.
    Broeckling, C.D., Reddy, I.R., Duran, A.L., Zhao, X., and Sumner, L.W., Anal. Chem., 2006, vol. 78, pp. 4334–4341.CrossRefGoogle Scholar
  71. 71.
    Schauer, N., Steinhauser, D., Strelkov, S., Schomburg, D., Allison, G., Moritz, T., Lundgren, K., Roessner-Tunali, U., Forbes, M.G., Willmitzer, L., Fernie, A.R., and Kopka, J., FEBS Lett., 2005, vol. 579, pp. 1332–1337.CrossRefGoogle Scholar
  72. 72.
    Stein, S.E., J. Am. Soc. Mass Spectrom., 1999, vol. 10, pp. 770–781.CrossRefGoogle Scholar
  73. 73.
    Jansen, R., Lachatre, G., and Marquet, P., Clin. Biochem., 2005, vol. 38, pp. 362–372.CrossRefGoogle Scholar
  74. 74.
    Bristow, A.W., Webb, K.S., Lubben, A.T., and Halket, J., Rapid Commun. Mass Spectrom., 2004, vol. 18, pp. 1447–1454.CrossRefGoogle Scholar
  75. 75.
    Lemire, S.W. and Busch, K.L., J. Mass Spectrom., 1996, vol. 31, pp. 280–288.CrossRefGoogle Scholar
  76. 76.
    Josephs, J.L. and Sanders, M., Rapid Commun. Mass Spectrom., 2004, vol. 18, pp. 743–759.CrossRefGoogle Scholar
  77. 77.
    Smith, C.A., O’Maille, G., Want, E.J., Qin, C., Trauger, S.A., Brandon, T.R., Custodio, D.E., Abagyan, R., and Siuzdak, G., Ther. Drug Monit., 2005, vol. 27, pp. 747–751.CrossRefGoogle Scholar
  78. 78.
    Pelander, A., Ojanpera, I., Laks, S., Rasanen, I., and Vuori, E., Anal. Chem., 2003, vol. 75, pp. 5710–5718.CrossRefGoogle Scholar
  79. 79.
    Halket, J.M., Waterman, D., Przyborowska, A.M., Patel, R.K., Fraser, P.D., and Bramley, P.M., J. Exp. Bot., 2005, vol. 56, pp. 219–243.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations