Suppression of 5-lipoxygenase activity by anionic cholesterol derivatives

  • D. A. Aleksandrov
  • G. F. Sud’ina
Experimental Studies


5-Lipoxygenase (5-LO) is a key enzyme involved into biosynthesis of leukotrienes (LTs), mediating the host defense system, and acting simultaneously as inflammatory agents. In this work the effect of anionic cholesterol derivatives on 5-LO activity has been investigated. Cholesterol sulfate activates human polymorphonuclear leukocytes (PMNL) and stimulates their adhesion to endothelium and collagen. Cholesterol sulfate and cholesterol phosphate suppressed leukotriene production in PMNL and in rat basophil leukemia (RBL-1) cell line as well as in homogenates of these cells. Kinetic characteristics of the effect of anionic cholesterol derivatives on leukotriene synthesis have been obtained. In all experiments cholesterol phosphate (charge-2) was shown to be more potent inhibitor than cholesterol sulfate (charge-1). We believe that this fact highlights the importance of negatively charged ester groups for suppression of 5-LO activity.

Key words

atherosclerosis inflammation neutrophil 5-lipoxygenase cholesterol sulfate cholesterol phosphate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ross, R., Glomset, J., and Harker, L., Am. J. Pathol., 1977, vol. 86, pp. 675–684.PubMedGoogle Scholar
  2. 2.
    Munro, J.M. and Cotran, R.S., Lab. Invest., 1988, vol. 58, pp. 249–261.PubMedGoogle Scholar
  3. 3.
    Heitzer, T., Schlinzig, T., Krohn, K., and Meinertz, T., Circulation, 2001, vol. 104, pp. 2673–2678.PubMedGoogle Scholar
  4. 4.
    Cullen, P., Rauterberg, J., and Lorkowski, S., Handb. Exp. Pharmacol., 2005, vol. 170, pp. 3–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Samuelsson, B., Science, 1983, vol. 220, pp. 568–575.PubMedCrossRefADSGoogle Scholar
  6. 6.
    Mehrabian, M. and Allayee, H., Curr. Opin. Lipidol., 2003, vol. 14, pp. 447–457.PubMedCrossRefGoogle Scholar
  7. 7.
    Ghosh, J. and Myers, C.E., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 13182–13187.PubMedCrossRefADSGoogle Scholar
  8. 8.
    Alanko, J., Sievi, E., Lahteenmaki, T., Mucha, I., Vapaatalo, H., and Parantainen, J., Biochem. Pharmacol., 1998, vol. 55, pp. 101–104.PubMedCrossRefGoogle Scholar
  9. 9.
    Steinhilber, D., Curr. Med. Chem., 1999, vol. 6, pp. 69–83.Google Scholar
  10. 10.
    Aleksandrov, D.A., Zagryagskaya, A.N., Pushkareva, M.A., Bachschmid, M., Peters-Golden, M., Werz, O., Steinhilber, D., and Sud’ina, G.F., FEBS J., 2006, vol. 273, pp. 548–557.PubMedCrossRefGoogle Scholar
  11. 11.
    Galkina, S.I., Dormeneva, E.V., Bachschmid, M., Pushkareva, M.A., Sud’ina, G.F., and Ullrich, V., Med. Sci. Monit., 2004, vol. 10, pp. BR307–BR316.PubMedGoogle Scholar
  12. 12.
    Sud’ina, G.F., Mirzoeva, O.K., Galkina, S.I., Pushkareva, M.A., and Ullrich, V., FEBS Lett., 1998, vol. 423, pp. 243–248.PubMedCrossRefGoogle Scholar
  13. 13.
    Sud’ina, G.F., Brock, T.G., Pushkareva, M.A., Galkina, S.I., Turutin, D.V., Peters-Golden, M., and Ullrich, V., Biochem. J., 2001, vol. 359, pp. 621–629.PubMedCrossRefGoogle Scholar
  14. 14.
    Rouzer, C.A., Matsumoto, T., and Samuelsson, B., Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 857–861.PubMedCrossRefADSGoogle Scholar
  15. 15.
    Rouzer, C.A. and Samuelsson, B., Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 7393–7397.PubMedCrossRefADSGoogle Scholar
  16. 16.
    Pande, A.H., Qin S., and Tatulian, S.A., Biophys. J., 2005, vol. 88, pp. 4084–4094.PubMedCrossRefGoogle Scholar
  17. 17.
    Bleau, G., Lalumiure, G., Chapdelaine, A., and Roberts, K., Biochim. Biophys. Acta, 1975, vol. 375, pp. 220–223.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.School of ChemistryMoscow State UniversityRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations