Contribution of Monovalent (Na+ and K+) and Divalent (Ca2+) Ions to the Mechanisms of Synaptic Plasticity

Abstract

The review presents the mechanisms of participation of ions (Na+, K+, and Ca2+) in the processes of synaptic plasticity in the postsynaptic neuron during long-term potentiation and long-term depression. It is assumed that the main participants are AMPA and NMDA receptors, voltage-dependent Na+, K+, Ca2+ channels, Ca2+ and Na+-activated K+ channels, ATP-sensitive K+ channels, and Ca2+ channels of the endoplasmic reticulum. The review provides their molecular characteristics and discusses their role in long-term potentiation and long-term depression. The significance of changes in the intracellular ratio [Na+]i/[K+]i and Ca2+-dependent mechanism are considered for the first time from the signal formation to the level of gene expression. We believe that additional research is needed to identify a subset of neuronal genes whose differential expression contributes to synaptic plasticity, which is implemented with the participation of [Na+]i/[K+]i-sensitive Ca2+-independent “excitation–transcription coupling” mechanism.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Bailey C.H., Kandel E.R., Harris K.M. 2015. Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb. Perspect. Biol. 7 (7), 1–29.

    Article  Google Scholar 

  2. 2

    Kojima M., Klein R.L., Hatanaka H. 2002. Pre- and post-synaptic modification by neurotrophins. Neurosci. Res. 43 (3), 193–199.

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Ghanbari A., Malyshev A., Volgushev M., Stevenson I.H. 2017. Estimating short-term synaptic plasticity from pre- and postsynaptic spiking. PLoS Comput. Biol. 13 (9), 1–28.

    Article  CAS  Google Scholar 

  4. 4

    Castro-Alamancos M.A., Connors B.W. 1997. Distinct forms of short-term plasticity at excitatory synapses of hippocampus and neocortex. Proc. Natl. Acad. Sci. USA. 94 (8), 4161–4166.

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Tallent M.K., Varghis N., Skorobogatko Y., Hernandez-Cuebas L., Whelan K., Vocadlo D.J., Vosseller K. 2009. In vivo modulation of O-GIcNAc levels regulates hippocampal synaptic plasticity through interplay with phosphorylation. J. Biol. Chem. 284 (1), 174–181.

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Hafner A.-S., Donlin-Asp P.G., Leitch B., Herzog E., Schuman E.M. 2019. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science. 364 (6441), eaau3644.

  7. 7

    Kukushkin N.V., Carew T.J. 2017. Memory takes time. Neuron. 95 (2), 259–279.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Bliss T.V.P., Collingridge G.L., Morris R.G.M., Reymann K.G. 2018. Long-term potentiation in the hippocampus: Discovery, mechanisms and function. Neuroforum. 24 (3), A103–A120.

    Article  Google Scholar 

  9. 9

    Artola A., Singer W. 1993. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci. 16 (11), 480–487.

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Lynch G., Larson J., Kelso S., Barrionuevo G., Schottler F. 1983. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature. 305 (5936), 719–721.

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Eccles J.C. 1983. Calcium in long-term potentiation as a model for memory. Neuroscience. 10 (4), 1071–1081.

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Malenka R.C. 1991. The role of postsynaptic calcium in the induction of long-term potentiation. Mol. Neurobiol. 5 (2–4), 289–295.

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Lüscher C., Malenka R.C. 2012. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 4 (6), a005710–a005710.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14

    Flavell S.W., Greenberg M.E. 2008. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci. 31 (1), 563–590.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Tatsuo S. 1994. Protein kinases involved in the expression of long-term potentiation. Int. J. Biochem. 26 (6), 735–744.

    Article  Google Scholar 

  16. 16

    Ma H., Groth R.D., Wheeler D.G., Barrett C.F., Tsien R.W. 2011. Excitation–transcription coupling in sympathetic neurons and the molecular mechanism of its initiation. Neurosci. Res. 70 (1), 2–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Orlov S.N., Mongin A.A. 2007. Salt-sensing mechanisms in blood pressure regulation and hypertension. Am. J. Physiol. Circ. Physiol. 293 (4), H2039–H2053.

    CAS  Article  Google Scholar 

  18. 18

    Sobolevsky A.I., Rosconi M.P., Gouaux E. 2009. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature. 462 (7274), 745–756.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Linden D.J., Smeyne M., Connor J.A. 1993. Induction of cerebellar long-term depression in culture requires postsynaptic action of Sodium Ions. Neuron. 11 (6), 1093–1100.

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Dickenson A.H. 2006. Amino acids: Excitatory. In: Neurotransmitters, Drugs Brain Funct. Chichester, UK: John Wiley & Sons, Ltd, p. 211–223.

    Google Scholar 

  21. 21

    Henley J.M., Wilkinson K.A. 2016. Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 17 (6), 337–350.

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Luscher C., Malenka R.C. 2012. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 4, a005710.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23

    Lalanne T., Oyrer J., Farrant M., Sjöström P.J. 2018. Synapse type-dependent expression of calcium-permeable AMPA receptors. Front. Synaptic Neurosci. 10, 1–8.

    Article  CAS  Google Scholar 

  24. 24

    Malinow R., Malenka R.C. 2002. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25 (1), 103–126.

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Liu S.Q.J., Cull-Candy S.G. 2000. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature. 405 (6785), 454–458.

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Gielen M., Siegler Retchless B., Mony L., Johnson J.W., Paoletti P. 2009. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 459 (7247), 703–707.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Yuan H., Hansen K.B., Vance K.M., Ogden K.K., Traynelis S.F. 2009. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci. 29 (39), 12045–12058.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Hansen K.B., Furukawa H., Traynelis S.F. 2010. Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol. Pharmacol. 78 (4), 535–549.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Karakas E., Furukawa H. 2014. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 344 (6187), 992–997.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Uteshev V. V. 2012. α7 nicotinic ACh receptors as a ligand-gated source of Ca2+ ions: The search for a Ca2+ optimum. Adv Exp Med Biol. 740, 603–638.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Bean B.P. 2007. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8 (6), 451–465.

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Yu F.H., Catterall W.A. 2003. Overview of the voltage-gated sodium channel family. Genome Biol. 4 (3), 207.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Catterall W.A. 2000. From ionic currents to molecular mechanisms. Neuron. 26 (1), 13–25.

    CAS  PubMed  Article  Google Scholar 

  34. 34

    George A.L. 2005. Inherited disorders of voltage-gated sodium channels. J. Clin. Invest. 115 (8), 1990–1999.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Savio-Galimberti E., Gollob M.H., Darbar D. 2012. Voltage-gated sodium channels: Biophysics, pharmacology, and related channelopathies. Front. Pharmacol. 3, 1–19.

    Article  CAS  Google Scholar 

  36. 36

    Caldwell J.H., Schaller K.L., Lasher R.S., Peles E., Levinson S.R. 2000. Sodium channel Nav1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc. Natl. Acad. Sci. USA. 97 (10), 5616–5620.

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Hu W., Tian C., Li T., Yang M., Hou H., Shu Y. 2009. Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat. Neurosci. 12 (8), 996–1002.

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Duflocq A., Le Bras B., Bullier E., Couraud F., Davenne M. 2008. Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments. Mol. Cell. Neurosci. 39 (2), 180–192.

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Solé L., Tamkun M.M. 2020. Trafficking mechanisms underlying Nav channel subcellular localization in neurons. Channels. 14 (1), 1–17.

    PubMed  Article  Google Scholar 

  40. 40

    Kim Y., Hsu C.L., Cembrowski M.S., Mensh B.D., Spruston N. 2015. Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. Elife. 4, 1–30.

    CAS  Google Scholar 

  41. 41

    Miller C. 2000. An overview of the potassium channel family. Genome Biol. 1 (4), 1–5.

    Article  Google Scholar 

  42. 42

    Zemel B.M., Ritter D.M., Covarrubias M., Muqeem T. 2018. A-Type KV channels in dorsal root ganglion neurons: Diversity, function, and dysfunction. Front. Mol. Neurosci. 11, 1–17.

    Article  CAS  Google Scholar 

  43. 43

    Giese K.P., Storm J.F., Reuter D., Fedorov N.B., Shao L.R., Leicher T., Pongs O., Silva A.J. 1998. Reduced K+ channel inactivation, spike broadening, and after- hyperpolarization in Kvβ1.1-deficient mice with impaired learning. Learn. Mem. 5 (4–5), 257–273.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Hofmann F., Lacinová L., Klugbauer N. 1999. Voltage-dependent calcium channels: From structure to function. Rev. Physiol. Biochem. Pharmacol. 139, 33–87.

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Brehm P., Eckert R. 1978. Calcium entry leads to inactivation of calcium channel in Paramecium. Science. 202 (4373), 1203–1206.

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Striessnig J., Pinggera A., Kaur G., Bock G., Tuluc P. 2014. L-type Ca2+ channels in heart and brain. Wiley Interdiscip. Rev. Membr. Transp. Signal. 3 (2), 15–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Ma H., Cohen S., Li B., Tsien R.W. 2013. Exploring the dominant role of Cav1 channels in signalling to the nucleus. Biosci. Rep. 33 (1), 97–101.

    Article  CAS  Google Scholar 

  48. 48

    Di Biase V., Obermair G.J., Szabo Z., Altier C., Sanguesa J., Bourinet E., Flucher B.E. 2008. Stable membrane expression of postsynaptic CaV1.2 calcium channel clusters is independent of interactions with AKAP79/150 and APZ proteins. J. Neurosci. 28 (51), 13845–13855.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Jenkins M.A., Christel C.J., Jiao Y., Abiria S., Kim K.Y., Usachev Y.M., Obermair G.J., Colbran R.J., Lee A. 2010. Ca2+-Dependent facilitation of cav1.3 Ca2+ channels by densin and Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. 30 (15), 5125–5135.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Striessnig J., Koschak A. 2008. Exploring the function and pharmacotherapeutic potential of voltage-gated Ca2+ channels with gene Knockout models. Channels. 2 (4), 233–251.

    PubMed  Article  Google Scholar 

  51. 51

    Moosmang S., Haider N., Klugbauer N., Adelsberger H., Langwieser N., Müller J., Stiess M., Marais E., Schulla V., Lacinova L., Goebbels S., Nave K.A., Storm D.R., Hofmann F., Kleppisch T. 2005. Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J. Neurosci. 25 (43), 9883–9892.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    White J.A., McKinney B.C., John M.C., Powers P.A., Kamp T.J., Murphy G.G. 2008. Conditional forebrain deletion of the L-type calcium channel Ca V1.2 disrupts remote spatial memories in mice. Learn. Mem. 15 (1), 1–5.

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Barad M. 2006. Divide and conquer: An L-type voltage-gated calcium channel subtype finds a role in conditioned fear: Commentary. Learn. Mem. 13 (5), 560–561.

    CAS  PubMed  Article  Google Scholar 

  54. 54

    Horrigan F.T., Aldrich R.W. 2002. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J. Gen. Physiol. 120 (3), 267–305.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Rothberg B.S., Magleby K.L. 1999. Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism. J. Gen. Physiol. 114 (1), 93–124.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Berkefeld H., Sailer C.A., Bildl W., Rohde V., Thumfart J.O., Eble S., Klugbauer N., Reisinger E., Bischofberger J., Oliver D., Knaus H.G., Schultes U., Fakler B. 2006. BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science. 314 (5799), 615–620.

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Berkefeld H., Fakler B. 2008. Repolarizing responses of BKCa-cav complexes are distinctly shaped by their cav subunits. J. Neurosci. 28 (33), 8238–8245.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Raffaelli G., Saviane C., Mohajerani M.H., Pedarzani P., Cherubini E. 2004. BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus. J. Physiol. 557 (1), 147–157.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Zhang J., Guan X., Li Q., Meredith A.L., Pan H.L., Yan J. 2018. Glutamate-activated BK channel complexes formed with NMDA receptors. Proc. Natl. Acad. Sci. USA. 115 (38), E9006–E9014.

    CAS  PubMed  Article  Google Scholar 

  60. 60

    Li Q., Yan J. 2016. Modulation of BK channel function by auxiliary beta and gamma subunits. Physiol. Behav. 128, 51–90.

    CAS  Google Scholar 

  61. 61

    Li B., Gao T.M. 2016. Functional role of mitochondrial and nuclear BK channels. Int. Rev. Neurobiol. 128, 163–191.

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Springer S.J., Burkett B.J., Schrader L.A. 2015. Modulation of BK channels contributes to activity-dependent increase of excitability through MTORC1 activity in CA1 pyramidal cells of mouse hippocampus. Front. Cell. Neurosci. 8, 1–12.

    Article  Google Scholar 

  63. 63

    Xia X.M., Fakler B., Rivard A., Wayman G., Johnson-Pais T., Keen J.E., Ishii T., Hirschberg B., Bond C.T., Lutsenko S., Maylie J., Adelman J.P. 1998. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature. 395 (6701), 503–507.

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Kohler M., Hirschberg B., Bond C.T., Kinzie J.M., Marrion N. V., Maylie J., Adelman J.P. 1996. Small-conductance, calcium-activated potassium channels from mammalian brain. Science. 273 (5282), 1709–1714.

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Hirschberg B., Maylie J., Adelman J.P., Marrion N. V. 1998. Gating of recombinant small-conductance Ca-activated K+ channels by calcium. J. Gen. Physiol. 111 (4), 565–581.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Logsdon N.J., Kang J., Togo J.A., Christian E.P., Aiyar J. 1997. A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J. Biol. Chem. 272 (52), 32 723–32 726.

    Article  Google Scholar 

  67. 67

    Ishii T.M., Silvia C., Hirschberg B., Bond C.T., Adelman J.P., Maylie J. 1997. A human intermediate conductance calcium-activated potassium channel. Proc. Natl. Acad. Sci. USA. 94 (21), 11 651–11 656.

    Article  Google Scholar 

  68. 68

    Sforna L., Megaro A., Pessia M., Franciolini F., Catacuzzeno L. 2018. Structure, gating and basic functions of the Ca2+-activated K channel of intermediate conductance. Curr. Neuropharmacol. 16 (5), 608–617.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    King B., Rizwan A.P., Asmara H., Heath N.C., Engbers J.D.T., Dykstra S., Bartoletti T.M., Hameed S., Zamponi G.W., Turner R.W. 2015. IKCa channels are a critical determinant of the slow AHP in CA1 pyramidal neurons. Cell Rep. 11 (2), 175–182.

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Faber E.S.L., Delaney A.J., Sah P. 2005. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Nat. Neurosci. 8 (5), 635–641.

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Marrion N. V., Tavalin S.J. 1998. Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature. 395 (6705), 900–905.

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Ngo-Anh T.J., Bloodgood B.L., Lin M., Sabatini B.L., Maylie J., Adelman J.P. 2005. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat. Neurosci. 8 (5), 642–649.

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Hammond B., Lemen J., Dudek R., Ward D., Jiang C., Nemeth M., Burns J. 2006. Results of a 90-day safety assurance study with rats fed grain from corn rootworm-protected corn. Food Chem. Toxicol. 44 (2), 147–160.

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Dryer S.E. 1994. Na+-activated K+ channels: A new family of large-conductance ion channels. Trends Neurosci. 17 (4), 155–160.

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Kameyama M., Kakei M., Sato R., Shibasaki T., Matsuda H., Irisawa H. 1984. Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature. 309 (5966), 354–356.

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Budelli G., Hage T.A., Wei A., Rojas P., Ivy Jong Y.J., O’Malley K., Salkoff L. 2009. Na+-activated K+ channels express a large delayed outward current in neurons during normal physiology. Nat. Neurosci. 12 (6), 745–750.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Lu S., Das P., Fadool D.A., Kaczmarek L.K. 2010. The slack sodium-activated potassium channel provides a major outward current in olfactory neurons of Kv1.3–/– super-smeller mice. J. Neurophysiol. 103 (6), 3311–3319.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Nuwer M.O., Picchione K.E., Bhattacharjee A. 2010. PKA-induced internalization of Slack KNa channels produces dorsal root ganglion neuron hyperexcitability. J. Neurosci. 30 (42), 14165–14172.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Hage T.A., Salkoff L. 2012. Sodium-activated potassium channels are functionally coupled to persistent sodium currents. J. Neurosci. 32 (8), 2714–2721.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Kaczmarek L.K. 2013. Slack, slick, and sodium-activated potassium channels. ISRN Neurosci. 2013, 1–14.

    Article  CAS  Google Scholar 

  81. 81

    Pfeiffer B.E., Huber K.M. 2009. The state of synapses in fragile X syndrome. Neurosci. 15 (5), 549–567.

    CAS  Google Scholar 

  82. 82

    Noma A. 1983. ATP-regulated K+ channels in cardiac muscle. Nature. 305 (5930), 147–148.

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Seino S., Miki T. 2003. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog. Biophys. Mol. Biol. 81 (2), 133–176.

    CAS  PubMed  Article  Google Scholar 

  84. 84

    Ashcroft F.M., Harrison D.E., Ashcroft S.J.H. 1984. Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature. 312 (5993), 446–448.

    CAS  PubMed  Article  Google Scholar 

  85. 85

    Haller M., Mironov S.L., Karschin A., Richter D.W. 2001. Dynamic activation of K ATP channels in rhythmically active neurons. J. Physiol. 537 (1), 69–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Zawar C., Plant T.D., Schirra C., Konnerth A., Neumcke B. 1999. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J. Physiol. 514 (2), 327–341.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Choeiri C., Staines W.A., Miki T., Seino S., Renaud J.M., Teutenberg K., Messier C. 2006. Cerebral glucose transporters expression and spatial learning in the K-ATP Kir6.2–/– knockout mice. Behav. Brain Res. 172 (2), 233–239.

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Moriguchi S., Ishizuka T., Yabuki Y., Shioda N., Sasaki Y., Tagashira H., Yawo H., Yeh J.Z., Sakagami H., Narahashi T., Fukunaga K. 2018. Blockade of the K ATP channel Kir6.2 by memantine represents a novel mechanism relevant to Alzheimer’s disease therapy. Mol. Psychiatry. 23 (2), 211–221.

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Brini M., Carafoli E. 2011. The Plasma Membrane Ca2+ ATPase and the plasma membrane Sodium Calcium exchanger cooperate in the regulation of cell Calcium. Cold Spring Harb. Perspect. Biol. 3 (2), 1–15.

    Article  CAS  Google Scholar 

  90. 90

    Jaffe D.B., Johnston D., Lasser-Ross N., Lisman J.E., Miyakawa H., Ross W.N. 1992. The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature. 357 (6375), 244–246.

    CAS  PubMed  Article  Google Scholar 

  91. 91

    Bennay M., Langer J., Meier S.D., Kafitz K.W., Rose C.R. 2008. Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission. Glia. 56 (10), 1138–1149.

    PubMed  Article  Google Scholar 

  92. 92

    Verkhratsky A. 2005. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol. Rev. 85 (1), 201–279.

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Block B.A., Imagawa T., Campbell K.P., Franzini-Armstrong C. 1988. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 107 (6), 2587–2600.

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Samsó M., Feng W., Pessah I.N., Allen P.D. 2009. Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating. PLoS Biol. 7 (4), e1000085.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  95. 95

    Gao L., Tripathy A., Lu X., Meissner G. 1997. Evidence for a role of C-terminal amino acid residues in skeletal muscle Ca2+ release channel (ryanodine receptor) function. FEBS Lett. 412 (1), 223–226.

    CAS  PubMed  Article  Google Scholar 

  96. 96

    Kunerth S., Langhorst M.F., Schwarzmann N., Gu X., Huang L., Yang Z., Zhang L., Mills S.J., Zhang L.H., Potter B.V.L., Guse A.H. 2004. Amplification and propagation of pacemaker Ca2+ signals by cyclic ADP-ribose and the type 3 ryanodine receptor in T cells. J. Cell Sci. 117 (10), 2141–2149.

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Gerasimenko J. V., Flowerdew S.E., Voronina S.G., Sukhomlin T.K., Tepikin A. V., Petersen O.H., Gerasimenko O. V. 2006. Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors. J. Biol. Chem. 281 (52), 40154–40163.

    CAS  PubMed  Article  Google Scholar 

  98. 98

    Sukhareva M., Smith S. V., Maric D., Barker J.L. 2002. Functional properties of ryanodine receptors in hippocampal neurons change during early differentiation in culture. J. Neurophysiol. 88 (3), 1077–1087.

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Korkotian E., Segal M. 2011. Synaptopodin regulates release of calcium from stores in dendritic spines of cultured hippocampal neurons. J. Physiol. 589 (24), 5987–5995.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Raymond C.R., Redman S.J. 2002. Different calcium sources are narrowly tuned to the induction of different forms of LTP. J. Neurophysiol. 88 (1), 249–255.

    CAS  PubMed  Article  Google Scholar 

  101. 101

    Raymond C.R., Redman S.J. 2006. Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J. Physiol. 570 (1), 97–111.

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Balschun D., Wolfer D.P., Bertocchini F., Barone V., Conti A., Zuschratter W., Missiaen L., Lipp H.P., Frey J.U., Sorrentino V. 1999. Deletion of the ryanodine receptor type 3 (RyR3) impairs forms of synaptic plasticity and spatial learning. EMBO J. 18 (19), 5264–5273.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103

    Santulli G., Nakashima R., Yuan Q., Marks A.R. 2017. Intracellular calcium release channels: An uAPate. J. Physiol. 595 (10), 3041–3051.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104

    Bezprozvanny I., Ehrlich B.E. 1994. Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: Conduction properties for divalent cations and regulation by intraluminal calcium. J. Gen. Physiol. 104 (5), 821–856.

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Boehning D., Mak D.O.D., Foskett J.K., Joseph S.K. 2001. Molecular determinants of ion permeation and selectivity in inositol 1,4,5-trisphosphate receptor Ca2+ channels. J. Biol. Chem. 276 (17), 13 509–13 512.

    Article  Google Scholar 

  106. 106

    Boehning D., Joseph S.K., Mak D.O.D., Foskett J.K. 2001. Single-channel recordings of recombinant inositol trisphosphate receptors in mammalian nuclear envelope. Biophys. J. 81 (1), 117–124.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107

    Marchenko S.M., Yarotskyy V. V., Kovalenko T.N., Kostyuk P.G., Thomas R.C. 2005. Spontaneously active and InsP3-activated ion channels in cell nuclei from rat cerebellar Purkinje and granule neurones. J. Physiol. 565 (3), 897–910.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108

    Fujii S., Matsumoto M., Igarashi K., Kato H., Mikoshiba K. 2000. Synaptic plasticity in hippocampal CA1 neurons of mice lacking type 1 inositol-1,4,5-trisphosphate receptors. Learn. Mem. 7 (5), 312–320.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109

    Qiu Z., Nicoll D.A., Philipson K.D. 2001. Helix packing of functionally important regions of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 276 (1), 194–199.

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Nicoll D.A., Ottolia M., Lu L., Lu Y., Philipson K.D. 1999. A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 274 (2), 910–917.

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Hilge M., Aelen J., Vuister G.W. 2006. Ca2+ Regulation in the Na+ /Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol. Cell. 22 (1), 15–25.

    CAS  PubMed  Article  Google Scholar 

  112. 112

    Lytton J. 2007. Na+/Ca2+ exchangers: Three mammalian gene families control Ca2+ transport. Biochem. J. 406 (3), 365–382.

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Quednau B.D., Nicoll D.A., Philipson K.D. 2004. The sodium/calcium exchanger family SLC8. Pflügers Arch. Eur. J. Physiol. 447 (5), 543–548.

    CAS  Article  Google Scholar 

  114. 114

    Quednau B.D., Nicoll D.A., Philipson K.D. 1997. Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am. J. Physiol. Physiol. 272 (4), C1250–C1261.

    CAS  Article  Google Scholar 

  115. 115

    DiPolo R., Beaugé L. 2006. Sodium/calcium exchanger: Influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 86 (1), 155–203.

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Blaustein M.P., Juhaszova M., Golovina V.A., Church P.J., Stanley E.F. 2006. Na/Ca exchanger and PMCA localization in neurons and astrocytes. Ann. N. Y. Acad. Sci. 976 (1), 356–366.

    Article  Google Scholar 

  117. 117

    Jeon D., Yang Y.M., Jeong M.J., Philipson K.D., Rhim H., Shin H.S. 2003. Enhanced learning and memory in mice lacking Na+/Ca2+ exchanger 2. Neuron. 38 (6), 965–976.

    CAS  PubMed  Article  Google Scholar 

  118. 118

    Molinaro P., Viggiano D., Nisticò R., Sirabella R., Secondo A., Boscia F., Pannaccione A., Scorziello A., Mehdawy B., Sokolow S., Herchuelz A., di Renzo G.F., Annunziato L. 2011. Na+-Ca2+ exchanger (NCX3) knock-out mice display an impairment in hippocampal long-term potentiation and spatial learning and memory. J. Neurosci. 31 (20), 7312–7321.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119

    Scheiner-Bobis G. 2002. The sodium pump. Eur. J. Biochem. 269 (10), 2424–2433.

    CAS  PubMed  Article  Google Scholar 

  120. 120

    Blanco G. 2005. Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin. Nephrol. 25 (5), 292–303.

    CAS  PubMed  Article  Google Scholar 

  121. 121

    Hieber V., Siegel G.J., Fink D.J., Beaty M.W., Mata M. 1991. Differential distribution of (Na, K)-ATPase? isoforms in the central nervous system. Cell. Mol. Neurobiol. 11 (2), 253–262.

    CAS  PubMed  Article  Google Scholar 

  122. 122

    McGrail K., Phillips J., Sweadner K. 1991. Immunofluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: Both neurons and glia can express more than one Na,K-ATPase. J. Neurosci. 11 (2), 381–391.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123

    Peng L., Martin-Vasallo P., Sweadner K.J. 1997. Isoforms of Na,K-ATPase α and β subunits in the rat cerebellum and in granule cell cultures. J. Neurosci. 17 (10), 3488–3502.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124

    Akkuratov E.E., Lopacheva O.M., Kruusmägi M., Lopachev A. V., Shah Z.A., Boldyrev A.A., Liu L. 2015. Functional interaction between Na/K-ATPase and NMDA receptor in cerebellar neurons. Mol. Neurobiol. 52 (3), 1726–1734.

    CAS  PubMed  Article  Google Scholar 

  125. 125

    Munzer J.S., Daly S.E., Jewell-Motz E.A., Lingrel J.B., Blostein R. 1994. Tissue- and isoform-specific kinetic behavior of the Na,K-ATPase. J. Biol. Chem. 269 (24), 16 668–16 676.

    Article  Google Scholar 

  126. 126

    Jewell E.A., Lingrel J.B. 1991. Comparison of the substrate dependence properties of the rat Na,K-ATPase α1, α2, and α3 isoforms expressed in HeLa cells. J. Biol. Chem. 266 (25), 16 925–16 930.

    Article  Google Scholar 

  127. 127

    Zahler R., Zhang Z.-T., Manor M., Boron W.F. 1997. Sodium kinetics of Na,K-ATPase α isoforms in intact transfected HeLa cells. J. Gen. Physiol. 110 (2), 201–213.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128

    Dobretsov M. 2005. Neuronal function and alpha3 isoform of the Na/K-ATPase. Front. Biosci. 10, 2373–2396.

    CAS  PubMed  Article  Google Scholar 

  129. 129

    Azarias G., Kruusmägi M., Connor S., Akkuratov E.E., Liu X.-L., Lyons D., Brismar H., Broberger C., Aperia A. 2013. A Specific and essential role for Na,K-ATPase α3 in neurons co-expressing α1 and α3. J. Biol. Chem. 288 (4), 2734–2743.

    CAS  PubMed  Article  Google Scholar 

  130. 130

    Kim J.H., Sizov I., Dobretsov M., Von Gersdorff H. 2007. Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the α3 Na+/K+-ATPase. Nat. Neurosci. 10 (2), 196–205.

    CAS  PubMed  Article  Google Scholar 

  131. 131

    Glushchenko T.S., Izvarina N.L. 1997. Na+,K+-ATPase activity in neurons and glial cells of the olfactory cortex of the rat brain during the development of long-term potentiation. Neurosci. Behav. Physiol. 27 (1), 49–52.

    CAS  PubMed  Article  Google Scholar 

  132. 132

    Reich C.G., Mason S.E., Alger B.E. 2004. Novel form of LTD induced by transient, partial inhibition of the Na, K-pump in rat hippocampal CA1 cells. J. Neurophysiol. 91 (1), 239–247.

    CAS  PubMed  Article  Google Scholar 

  133. 133

    Niggli V., Sigel E., Carafoli E. 1982. The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca2+-H+ exchange in reconstituted liposomal systems. J. Biol. Chem. 257 (5), 2350–2356.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134

    Smallwood J.I., Waisman D.M., Lafreniere D., Rasmussen H. 1983. Evidence that the erythrocyte calcium pump catalyzes a Ca2+:nH+ exchange. J. Biol. Chem. 258 (18), 11 092–11 097.

    Article  Google Scholar 

  135. 135

    Di Leva F., Domi T., Fedrizzi L., Lim D., Carafoli E. 2008. The plasma membrane Ca2+ ATPase of animal cells: Structure, function and regulation. Arch. Biochem. Biophys. 476 (1), 65–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136

    Greeb J., Shull G.E. 1989. Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle. J. Biol. Chem. 264 (31), 18 569–18 576.

    Article  Google Scholar 

  137. 137

    Stauffer T.P., Guerini D., Carafoli E. 1995. Tissue distribution of the four gene products of the plasma membrane Ca pump. J. Biol. Chem. 270 (20), 12184–12190.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138

    Mata A.M. 2010. Plasma membrane Ca2+-ATPases in the nervous system during development and ageing. World J. Biol. Chem. 1 (7), 229.

    PubMed  PubMed Central  Article  Google Scholar 

  139. 139

    Burette A.C., Strehler E.E., Weinberg R.J. 2009. ‘Fast’ plasma membrane calcium pump PMCA2a concentrates in GABAergic terminals in the adult rat brain. J. Comp. Neurol. 512 (4), 500–513.

    PubMed  PubMed Central  Article  Google Scholar 

  140. 140

    Strehler E.E., Filoteo A.G., Penniston J.T., Caride A.J. 2007. Plasma-membrane Ca2+ pumps: Structural diversity as the basis for functional versatility. Biochem. Soc. Trans. 35 (5), 919–922.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141

    Marques-da-Silva D., Gutierrez-Merino C. 2014. Caveolin-rich lipid rafts of the plasma membrane of mature cerebellar granule neurons are microcompartments for calcium/reactive oxygen and nitrogen species cross-talk signaling. Cell Calcium. 56 (2), 108–123.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142

    Garside M.L., Turner P.R., Austen B., Strehler E.E., Beesley P.W., Empson R.M. 2009. Molecular interactions of the plasma membrane calcium ATPase 2 at pre- and post-synaptic sites in rat cerebellum. Neuroscience. 162 (2), 383–395.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143

    Zanni G., Calì T., Kalscheuer V.M., Ottolini D., Barresi S., Lebrun N., Montecchi-Palazzi L., Hu H., Chelly J., Bertini E., Brini M., Carafoli E. 2012. Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc. Natl. Acad. Sci. USA. 109 (36), 14 514–14 519.

    Article  Google Scholar 

  144. 144

    Kip S.N., Gray N.W., Burette A., Canbay A., Weinberg R.J., Strehler E.E. 2006. Changes in the expression of plasma membrane calcium extrusion systems during the maturation of hippocampal neurons. Hippocampus. 16 (1), 20–34.

    CAS  PubMed  Article  Google Scholar 

  145. 145

    Misquitta C.M., Mack D.P., Grover A.K. 1999. Sarco/endoplasmic reticulum Ca2+(SERCA)-pumps: Link to heart beats and calcium waves. Cell Calcium. 25 (4), 277–290.

    CAS  PubMed  Article  Google Scholar 

  146. 146

    Verboomen H., Wuytack F., Van den Bosch L., Mertens L., Casteels R. 1994. The functional importance of the extreme C-terminal tail in the gene 2 organellar Ca2+-transport ATPase (SERCA2a/b). Biochem. J. 303 (3), 979–984.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147

    Majewska A., Brown E., Ross J., Yuste R. 2000. Mechanisms of calcium decay kinetics in hippocampal spines: Role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J. Neurosci. 20 (5), 1722–1734.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148

    Emptage N.J., Reid C.A., Fine A. 2001. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron. 29 (1), 197–208.

    CAS  PubMed  Article  Google Scholar 

  149. 149

    Collingridge B.Y.G.L., Kehl S.J., Mclennan H. 1983. Excitatory amino acids in synaptic transmission in the schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. 334, 33–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150

    Bliss T. V., Collingridge G.L. 1993. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature. 361 (6407), 31–39.

    CAS  PubMed  Article  Google Scholar 

  151. 151

    Aniksztejn L., Ben-Ari Y. 1995. Expression of LTP by AMPA and/or NMDA receptors is determined by the extent of NMDA receptors activation during the tetanus. J. Neurophysiol. 74 (6), 2349–2357.

    CAS  PubMed  Article  Google Scholar 

  152. 152

    Berridge M.J. 1998. Neuronal calcium signaling. Neuron. 21 (1), 13–26.

    CAS  PubMed  Article  Google Scholar 

  153. 153

    Malenka R.C., Lancaster B., Zucker R.S. 1992. Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron. 9 (1), 121–128.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. 154

    Santana L.F. 2008. Editorial: NFAT-dependent excitation-transcription coupling in heart. Circ. Res. 103 (7), 681–683.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155

    Gundersen K. 2011. Excitation-transcription coupling in skeletal muscle: The molecular pathways of exercise. Biol. Rev. 86 (3), 564–600.

    PubMed  Article  PubMed Central  Google Scholar 

  156. 156

    Morgan J.I., Curran T. 1989. Stimulus-transcription coupling in neurons: Role of cellular immediate-early genes. Trends Neurosci. 12 (11), 459–462.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  157. 157

    Sheng M., Greenberg M.E. 1990. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron. 4 (4), 477–485.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  158. 158

    Cole A.J., Saffen D.W., Baraban J.M., Worley P.F. 1989. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature. 340 (6233), 474–476.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. 159

    Fleischmann A., Hvalby O., Jensen V., Strekalova T., Zacher C., Layer L.E., Kvello A., Reschke M., Spanagel R., Sprengel R., Wagner E.F., Gass P. 2003. Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-fos in the CNS. J. Neurosci. 23 (27), 9116–9122.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. 160

    Minatohara K., Akiyoshi M., Okuno H. 2016. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front. Mol. Neurosci. 8, 1–11.

    Article  CAS  Google Scholar 

  161. 161

    Greenberg M.E., Ziff E.B., Greene L.A. 1986. Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science. 234 (4772), 80–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  162. 162

    Orlov S.N., Aksentsev S.L., Kotelevtsev S. V. 2005. Extracellular calcium is required for the maintenance of plasma membrane integrity in nucleated cells. Cell Calcium. 38 (1), 53–57.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. 163

    Koltsova S. V., Tremblay J., Hamet P., Orlov S.N. 2015. Transcriptomic changes in Ca2+-depleted cells: Role of elevated intracellular [Na+]/[K+] ratio. Cell Calcium. 58 (3), 317–324.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  164. 164

    Deisseroth K., Heist E.K., Tsien R.W. 1998. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature. 392 (6672), 198–202.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  165. 165

    Ma H., Groth R.D., Cohen S.M., Emery J.F., Li B., Hoedt E., Zhang G., Neubert T.A., Tsien R.W. 2014. γcaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell. 159 (2), 281–294.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. 166

    Malenka R.C., Kauer J.A., Perkel D.J., Mauk M.D., Kelly P.T., Nicoll R.A., Waxham M.N. 1989. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature. 340 (6234), 554–557.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  167. 167

    Mcdonald T.F., Pelzer S., Trautwein W., Pelzer D.J. 1994. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol. Rev. 74 (2), 365–507.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  168. 168

    Greer P.L., Greenberg M.E. 2008. From synapse to nucleus: Calcium-dependent gene transcription in the control of synapse development and function. Neuron. 59 (6), 846–860.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  169. 169

    Clapham D.E. 2007. Calcium signaling. Cell. 131 (6), 1047–1058.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  170. 170

    Derkach V., Barria A., Soderling T.R. 1999. Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA. 96 (6), 3269–3274.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. 171

    Kristensen A.S., Jenkins M. a., Banke T.G., Schousboe A., Johnson R.C., Huganir R., Traynelis S.F. 2011. Mechanism of CaMKII regulation of AMPA receptor gating. Nat. Neurosci. 14 (6), 727–735.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  172. 172

    Mitsushima D., Ishihara K., Sano A., Kessels H.W., Takahashi T. 2011. Contextual learning requires synaptic AMPA receptor delivery in the hippocampus. Proc. Natl. Acad. Sci. USA. 108 (30), 12 503–12 508.

    Article  Google Scholar 

  173. 173

    Banke T.G., Bowie D., Lee H., Huganir R.L., Schousboe A., Traynelis S.F. 2000. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20 (1), 89–102.

  174. 174

    Chetkovich D.M., Gray R., Johnston D., Sweatt J.D. 1991. N-Methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Proc. Natl. Acad. Sci. USA. 88 (15), 6467–6471.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  175. 175

    Lau C.G., Takeuchi K., Rodenas-Ruano A., Takayasu Y., Murphy J., Bennett M.V.I., Zukin R.S. 2009. Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. Biochem. Soc. Trans. 37 (6), 1369–1374.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. 176

    Aman T.K., Maki B.A., Ruffino T.J., Kasperek E.M., Popescu G.K. 2014. Separate intramolecular targets for protein kinase A control N-Methyl-D-aspartate receptor gating and Ca2+ permeability. J. Biol. Chem. 289 (27), 18 805–18 817.

    Article  CAS  Google Scholar 

  177. 177

    Matthews R.P., Guthrie C.R., Wailes L.M., Zhao X., Means A.R., McKnight G.S. 1994. Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol. Cell. Biol. 14 (9), 6107–6116.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  178. 178

    Reymann K.G., Frey U., Jork R., Matthies H. 1988. Polymyxin B, an inhibitor of protein kinase C, prevents the maintenance of synaptic long-term potentiation in hippocampal CA1 neurons. Brain Res. 440 (2), 305–314.

    CAS  PubMed  Article  Google Scholar 

  179. 179

    Kauer J.A., Malenka R.C., Nicoll R.A. 1988. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron. 1 (10), 911–917.

    CAS  PubMed  Article  Google Scholar 

  180. 180

    Lovinger D.M., Wong K.L., Murakami K., Routtenberg A. 1987. Protein kinase C inhibitors eliminate hippocampal long-term potentiation. Brain Res. 436 (1), 177–183.

    CAS  PubMed  Article  Google Scholar 

  181. 181

    Finkbeiner S., Greenberg M.E. 1996. Ca2+-dependent routes to Ras: Mechanisms for neuronal survival, differentiation, and plasticity? Neuron. 16 (2), 233–236.

    CAS  PubMed  Article  Google Scholar 

  182. 182

    Herring B.E., Nicoll R.A. 2016. Long-term potentiation: From CaMKII to AMPA receptor trafficking. Annu. Rev. Physiol. 78 (1), 351–365.

    CAS  PubMed  Article  Google Scholar 

  183. 183

    Murakoshi H., Wang H., Yasuda R. 2011. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature. 472 (7341), 100–104.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  184. 184

    Lynch G., Rex C.S., Gall C.M. 2007. LTP consolidation: Substrates, explanatory power, and functional significance. Neuropharmacology. 52 (1), 12–23.

    CAS  PubMed  Article  Google Scholar 

  185. 185

    Amini M., Ma C. -l., Farazifard R., Zhu G., Zhang Y., Vanderluit J., Zoltewicz J.S., Hage F., Savitt J.M., Lagace D.C., Slack R.S., Beique J.-C., Baudry M., Greer P.A., Bergeron R., Park D.S. 2013. Conditional disruption of calpain in the CNS alters dendrite morphology, impairs LTP, and promotes neuronal survival following injury. J. Neurosci. 33 (13), 5773–5784.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  186. 186

    Baeza-Lehnert F., Saab A.S., Gutiérrez R., Larenas V., Díaz E., Horn M., Vargas M., Hösli L., Stobart J., Hirrlinger J., Weber B., Barros L.F. 2019. Non-canonical control of neuronal energy status by the Na+ pump. Cell Metab. 29 (3), 668–680.e4.

    CAS  PubMed  Article  Google Scholar 

  187. 187

    Kiedrowski L., Wroblewski J.T., Costa E. 1994. Intracellular sodium concentration in cultured cerebellar granule cells challenged with glutamate. Mol. Pharmacol. 45 (5), 1050–1054.

    CAS  PubMed  Google Scholar 

  188. 188

    Rose C.R., Konnerth A. 2001. NMDA receptor-mediated Na+ signals in spines and dendrites. J. Neurosci. 21 (12), 4207–4214.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  189. 189

    Somjen G.G. 2002. Ion regulation in the brain: Implications for pathophysiology. Neuroscientist. 8 (3), 254–267.

    CAS  PubMed  Article  Google Scholar 

  190. 190

    Deitmer J.W., Rose C.R. 2010. Ion changes and signalling in perisynaptic glia. Brain Res. Rev. 63 (1–2), 113–129.

    CAS  PubMed  Article  Google Scholar 

  191. 191

    Verkhratsky A., Noda M., Parpura V., Kirischuk S. 2013. Sodium fluxes and astroglial function. Adv. Exp. Med. Biol. 961, 295–305.

    CAS  PubMed  Article  Google Scholar 

  192. 192

    Callaway J.C., Ross W.N. 1997. Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons. J. Neurophysiol. 77 (1), 145–152.

    CAS  PubMed  Article  Google Scholar 

  193. 193

    Miyazaki K., Ross W.N. 2017. Sodium dynamics in pyramidal neuron dendritic spines: Synaptically evoked entry predominantly through AMPA receptors and removal by diffusion. J. Neurosci. 37 (41), 9964–9976.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  194. 194

    Behnisch T., Reymann K.G. 1995. Thapsigargin blocks long-term potentiation induced by weak, but not strong tetanisation in rat hippocampal CA1 neurons. Neurosci. Lett. 192 (3), 185–188.

    CAS  PubMed  Article  Google Scholar 

  195. 195

    Balschun D., Wolfer D.P., Gass P., Mantamadiotis T., Welzl H., Schütz G., Frey J.U., Lipp H.P. 2003. Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J. Neurosci. 23 (15), 6304–6314.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  196. 196

    Koltsova S. V., Trushina Y., Haloui M., Akimova O.A., Tremblay J., Hamet P., Orlov S.N. 2012. Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: Evidence for Ca2+ i-independent excitation-transcription coupling. PLoS One. 7 (5), e38032.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  197. 197

    Kasahara J., Fukunaga K., Miyamoto E. 2001. Activation of calcium/calmodulin-dependent protein kinase IV in long term potentiation in the rat hippocampal CA1 region. J. Biol. Chem. 276 (26), 24 044–24 050.

    Article  Google Scholar 

  198. 198

    Taurin S., Dulin N.O., Pchejetski D., Grygorczyk R., Tremblay J., Hamet P., Orlov S.N. 2002. c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: Evidence for an intracellular-sodium-mediated, calcium-independent mechanism. J. Physiol. 543 (3), 835–847.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  199. 199

    Haloui M., Taurin S., Akimova O.A., Guo D.F., Tremblay J., Dulin N.O., Hamet P., Orlov S.N. 2007. [Na+]i-induced c-Fos expression is not mediated by activation of the 5′-promoter containing known transcriptional elements. FEBS J. 274 (14), 3557–3567.

    CAS  PubMed  Article  Google Scholar 

  200. 200

    Orlov S.N., Taurin S., Tremblay J., Hamet P. 2001. Inhibition of Na+,K+ pump affects nucleic acid synthesis and smooth muscle cell proliferation via elevation of the [Na+]i/ [K+]i ratio: Possible implication in vascular remodelling. J. Hypertens. 19 (9), 1559–1565.

    CAS  PubMed  Article  Google Scholar 

  201. 201

    Smolyaninova L. V., Shiyan A.A., Kapilevich L. V., Lopachev A. V., Fedorova T.N., Klementieva T.S., Moskovtsev A.A., Kubatiev A.A., Orlov S.N. 2019. Transcriptomic changes triggered by ouabain in rat cerebellum granule cells: Role of α3- And α1- Na+,K+-ATPase-mediated signaling. PLoS One. 14 (9), 1–23.

    Article  CAS  Google Scholar 

  202. 202

    Yang H., Chen C. 2008. Cyclooxygenase-2 in synaptic signaling. Curr. Pharm. Des. 14 (14), 1443–1451.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  203. 203

    Yamagata K., Andreasson K.I., Kaufmann W.E., Barnes C.A., Worley P.F. 1993. Expression of a mitogen-inducible cyclooxygenase in brain neurons: Regulation by synaptic activity and glucocorticoids. Neuron. 11 (2), 371–386.

    CAS  PubMed  Article  Google Scholar 

  204. 204

    Chen C., Magee J.C., Bazan N.G. 2002. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J. Neurophysiol. 87 (6), 2851–2857.

    CAS  PubMed  Article  Google Scholar 

  205. 205

    Sang N., Chen C. 2006. Lipid signaling and synaptic plasticity. Neuroscientist. 12 (5), 425–434.

    CAS  PubMed  Article  Google Scholar 

  206. 206

    Yagami T., Koma H., Yamamoto Y. 2016. Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Mol. Neurobiol. 53 (7), 4754–4771.

    CAS  PubMed  Article  Google Scholar 

  207. 207

    Koelle M.R. 1997. A new family of G-protein regulators – the RGS proteins. Curr. Opin. Cell Biol. 9 (2), 143–147.

    CAS  PubMed  Article  Google Scholar 

  208. 208

    Ingi T., Krumins A.M., Chidiac P., Brothers G.M., Chung S., Snow B.E., Barnes C.A., Lanahan A.A., Siderovski D.P., Ross E.M., Gilman A.G., Worley P.F. 1998. Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J. Neurosci. 18 (18), 7178–7188.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  209. 209

    Leslie J.H., Nedivi E. 2011. Activity-regulated genes as mediators of neural circuit plasticity. Prog. Neurobiol. 94 (3), 223–237.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  210. 210

    Rudy J.W. 2014. The neurobiology of learning and memory. Sunderland, MA: Sinauer Associates, Inc. Publishers, p. 48–55.

    Google Scholar 

  211. 211

    Xu X., Shrager P. 2005. Dependence of axon initial segment formation on Na+ channel expression. J. Neurosci. Res. 79 (4), 428–441.

    CAS  PubMed  Article  Google Scholar 

  212. 212

    Oda T., Makino K., Yamashita I., Namba K., Maéda Y. 2001. Distinct structural changes detected by X-ray fiber diffraction in stabilization of F-actin by lowering pH and increasing ionic strength. Biophys. J. 80 (2), 841–851.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  213. 213

    Rajamanickam G.D., Kroetsch T., Kastelic J.P., Thundathil J.C. 2017. Testis-specific isoform of Na/K-ATPase (ATP1A4) regulates sperm function and fertility in dairy bulls through potential mechanisms involving reactive oxygen species, calcium and actin polymerization. Andrology. 5 (4), 814–823.

    CAS  PubMed  Article  Google Scholar 

  214. 214

    Rajasekaran A.K., Rajasekaran S.A. 2003. Role of Na-K-ATPase in the assembly of tight junctions. Am. J. Physiol.Ren. Physiol. 285, 388–396.

    Article  Google Scholar 

  215. 215

    La J., Reed E.B., Koltsova S., Akimova O., Hamanaka R.B., Mutlu G.M., Orlov S.N., Dulin N.O. 2016. Regulation of myofibroblast differentiation by cardiac glycosides. Am. J. Physiol.Lung Cell. Mol. Physiol. 310 (9), L815–L823.

    PubMed  PubMed Central  Article  Google Scholar 

  216. 216

    Alder J., Thakker-Varia S., Bangasser D.A., Kuroiwa M., Plummer M.R., Shors T.J., Black I.B. 2003. Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity. J. Neurosci. 23 (34), 10 800–10 808.

    Article  Google Scholar 

  217. 217

    Altar C.A., Laeng P., Jurata L.W., Brockman J.A., Lemire A., Bullard J., Bukhman Y. V., Young T.A., Charles V., Palfreyman M.G. 2004. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J. Neurosci. 24 (11), 2667–2677.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  218. 218

    Sidorenko S., Klimanova E., Milovanova K., Lopina O.D., Kapilevich L.V., Chibalin A.V., Orlov S.N. 2018. Transcriptomic changes in C2C12 myotubes triggered by electrical stimulation: Role of \({\text{Ca}}_{{\text{i}}}^{{2 + }}\)-mediated and \({\text{Ca}}_{{\text{i}}}^{{2 + }}\)-independent signaling and elevated [Na+]i/[K+]i ratio. Cell Calcium. 76, 72–86.

    CAS  PubMed  Article  Google Scholar 

  219. 219

    Ng A.N., Toresson H. 2011. Endoplasmic reticulum dynamics in hippocampal dendritic spines induced by agonists of type I metabotropic glutamate but not by muscarinic acetylcholine receptors. Synapse. 65 (4), 351–355.

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 19-14-50 358).

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. V. Smolyaninova.

Ethics declarations

The authors state that there is no conflict of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: AMPAR, AMPA receptors; AP, action potential; APV, aminophosphovaleric acid; CaM, calmodulin; CaV, voltage-dependent Ca2+ channels; CIRC, calcium-induced release of calcium; CNQX, cyanquinoxalin; CP-AMPAR, Ca2+-permeable AMPA receptors; EPR, endoplasmic reticulum; ETC, excitation–transcription coupling; IAS, initial axon segments; IEG, immediate early genes; InsP3R, inositol-3-phosphate receptors; LTD, long-term depression; LTP, long-term potentiation; KATP, ATP-sensitive K+ channels; KCa, Ca2+-activated K+ channels; KNa, Na+-activated K+ channels; KV, voltage-dependent K+ channels; MP, membrane potential; NaV, voltage-dependent Na+ channels; NCX, Na+/Ca2+ exchanger; NMDAR, NMDA receptors; PMCA, plasma membrane Ca2+-ATPase; RP, resting potential; RyR, ryanodine receptors; SERCA, endoplasmic reticulum Ca2+-ATPase.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smolyaninova, L.V., Shiyan, A.A., Maksimov, G.V. et al. Contribution of Monovalent (Na+ and K+) and Divalent (Ca2+) Ions to the Mechanisms of Synaptic Plasticity. Biochem. Moscow Suppl. Ser. A 15, 1–20 (2021). https://doi.org/10.1134/S1990747820050062

Download citation

Keywords:

  • sodium
  • potassium
  • calcium
  • synaptic plasticity
  • long-term potentiation and depression
  • gene expression