Skip to main content
Log in

Effects of Nd3+ on Calcium-Dependent Processes in Isolated Rat Heart Mitochondria and Frog Heart Muscle

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The inotropic and chronotropic effects of neodymium ions (Nd3+) on the heart muscle of a frog Rana ridibunda and the influence of Nd3+ on respiration, swelling, and potential (∆Ψmito) of Ca2+-loaded rat heart mitochondria (RHM) were studied. It was found that Nd3+ reduced the amplitude and frequency of spontaneous heart contraction (Fmax); Nd3+ also prevented a short-term increase in Ca2+-induced basal respiration of mitochondria and their swelling in salt media, as well as a decrease of ∆Ψmito on the inner mitochondrial membrane (IMM). At the same time, Nd3+ slightly affected mitochondrial respiration in state 3 or in 2,4-dinitrophenol (DNP)-uncoupled state. These effects of Nd3+ may indicate that Nd3+ inhibits the mitochondrial permeability transition pore (MPTP) opening, which is formed in calcium loaded mitochondria. The data obtained are important for a better understanding of the mechanisms of action of rare earth elements on Ca2+-dependent processes in the myocardium of vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kieffer F. 1990. Metals and their composition in the environment. Ed. Merian E. Weinheim, Germany: Wiley–VCH.

    Google Scholar 

  2. Hallab N.J., Anderson S., Caicedo M., Jacobs J.J. 2006. Zirconium and niobium affect human osteoblasts, fibroblasts, and lymphocytes in a similar manner to more traditional implant alloy metals. J. ASTM Int. 3, 429–440.

    Article  Google Scholar 

  3. Saghiri M.A., Orangi J., Asatourian A., Sorenson C.M., Sheibani N. 2016. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb). Crit. Rev. Oncol. Hematol. 98, 290–301.

    Article  PubMed  Google Scholar 

  4. Ebert A., Stangl J., Kühn R., Schafhauser W., Urologe A. 2003. The frequency-doubled double-pulse Neodym:YAG laser lithotripter (FREDDY) in lithotripsy of urinary stones. First clinical experience. Urologe A. 42 (6), 825–833.

    Article  CAS  PubMed  Google Scholar 

  5. Kramer M.W., Bach T., Wolters M., Imkamp F., Gross A.J., Kuczyk M.A., Merseburger A.S., Herrmann T.R. 2011. Current evidence for transurethral laser therapy of non-muscle invasive bladder cancer. World J. Urol. 29 (4), 433–442.

    Article  PubMed  Google Scholar 

  6. Sobol C.V., Korotkov S.M., Nesterov V.P. 2014. Inotropic effect of the new probiotic product on myocardial contractility. Comparison with diazoxide. Biofizika (Rus.). 59 (5), 959–966.

    CAS  Google Scholar 

  7. Korotkov S.M., Nesterov V.P., Demina I.N. 2009. Effect of sodium load of the matrix on properties of isolated rat heart mitochondria. Doklady Biochemistry and Biophysics. 424 (1), 56–60.

    Article  CAS  PubMed  Google Scholar 

  8. Korotkov S.M., Emel’yanova L.V., Brailovskaya I.V. Nesterov V.P. 2012. Effects of pinacidil and calcium on isolated rat heart mitochondria. Doklady Biochemistry and Biophysics. 443 (1), 113–117.

    Article  CAS  PubMed  Google Scholar 

  9. Shemarova I.V., Sobol K.V., Korotkov S.M., Nesterov V.P. 2014. Action of yttrium on calcium-dependent processes in the myocardium of vertebrates. Zh. Evolutsionnoy Biokhimii i Fiziologii (Rus.). 50 (3), 196–200.

    CAS  Google Scholar 

  10. Shemarova I.V., Nesterov V.P., Korotkov S.M. 2013. Action of La3+ on the systems providing contractility of vertebrate myocardium. Zh. Evolutsionnoy Biokhimii i Fiziologii (Rus.). 49 (4), 278–284.

    Google Scholar 

  11. Shemarova I.V., Korotkov S.M., Demina I.N., Nesterov V.P. 2010. Effect of oxidative processes in mitochondria on cardiac muscle contractility. The Effects of Ni2+. Zh. Evolutsionnoy Biokhimii i Fiziologii (Rus.). 46 (2), 138–142.

    CAS  Google Scholar 

  12. Shemarova I.V., Korotkov S.M., Nesterov V.P. 2011. The influence of oxidative processes in the mitochondria in cardiac muscle contractility in the frog Rana temporaria. Actions of Cd2+. Zh. Evolutsionnoy Biokhimii i Fiziologii (Rus.). 47 (4), 306–310.

    CAS  Google Scholar 

  13. Bers D.M. 2002. Cardiac excitation and contraction coupling. Nature. 415 (6868), 198–205.

    Article  CAS  Google Scholar 

  14. Talbert R.L., Bassi N.I., 1983. Update agents blocking calcium channels. Clin. Pharmacy. 2, 403–416.

    CAS  Google Scholar 

  15. Biagi B.A., Enyeart J.J. 1990. Gadolinium blocks low- and high-threshold calcium currents in pituitary cells. Am. J. Physiol. 259, C515–C520.

    Article  CAS  PubMed  Google Scholar 

  16. Korotkov S.M., Sobol C.V., Shemarova I.V., Furaev V.V., Nesterov V.P. 2016. A comparative study of the effect of Y3+ on the calcium-dependent processes in the heart muscle of the frog and in the mitochondria of rat cardiomyocytes. Zh. Evolutsionnoy Biokhimii i Fiziologii (Rus.). 52 (3), 177–183.

    CAS  Google Scholar 

  17. Gschneidner K.A., Bünzli J.C., Pecharsky V.K. 2011. Handbook of the physics and chemistry of rare earths. North Holland: Elsevier.

    Google Scholar 

  18. Helli P.B., Pertens E., Janssen L.J. 2005. Cyclopiazonic acid activates a Ca2+-permeable, nonselective cation conductance in porcine and bovine tracheal smooth muscle. J. Appl. Physiol. 99 (5), 1759–1768.

    Article  CAS  PubMed  Google Scholar 

  19. Kasparin F.O. 2000. Kinetika electrogennogo transporta dvuhvelentnih kationov v mitohondriyakh. (Kinetics of electrogenic transport of bivalent cations in mitochondria). Extended Abstract of Cand. Sci. Dissertation, Moscow state University, M., 2000.

  20. Szabo I., Zoratti M. 2014. Mitochondrial channels: Ion fluxes and more. Physiol Rev. 94 (2), 519–608.

    Article  CAS  PubMed  Google Scholar 

  21. Biasutto L., Azzolini M., Szabò I., Zoratti M. 2016. The mitochondrial permeability transition pore in AD 2016: An update. Biochim. Biophys. Acta. 1863 (10), 2515–2530.

  22. Shemarova I.V., Korotkov S.M., Nesterov V.P. 2015. The mechanisms of action of Li+ on the myocardium of vertebrates. Zh. Evolutsionnoy Biokhimii i Fiziologii (Rus.). 51 (3), 181–186.

    CAS  Google Scholar 

  23. Jung D.W., Brierley G.P. 1984. The permeability of uncoupled heart mitochondria to potassium ion. J. Biol. Chem. 259 (11), 6904–6911.

    CAS  PubMed  Google Scholar 

  24. Korotkov S.M., Glazunov V.V., Nikitina E.R. 1997. Respiration and ion permeability of the inner membrane in rat liver “sodium” mitochondria. Tsitologiya (Rus.). 39 (11), 1046–1054.

    CAS  Google Scholar 

  25. Brierley G.P., Jurkowitz M., Scott K.M., Merola A.J. 1970. Ion transport by heart mitochondria. Factors affecting passive osmotic swelling of isolated mitochondria. J. Biol. Chem. 245 (20), 5404–5411.

    CAS  PubMed  Google Scholar 

  26. Korotkov S., Konovalova S., Emelyanova L., Brailovskaya I. 2014. Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. J. Inorg. Biochem. 141 (1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  27. Korotkov S.M., Nesterov V.P., Brailovskaya I.V., Furaev V.V., Novozhilov A.V. 2013. Tl+ induces both cationic and transition pore permeability in the inner membrane of rat heart mitochondria. J. Bioenerg. Biomembr. 45 (6), 531–539.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Korotkov.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkov, S.M., Sobol, C.V., Schemarova, I.V. et al. Effects of Nd3+ on Calcium-Dependent Processes in Isolated Rat Heart Mitochondria and Frog Heart Muscle. Biochem. Moscow Suppl. Ser. A 13, 161–167 (2019). https://doi.org/10.1134/S1990747819070018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747819070018

Keywords:

Navigation