Advertisement

Effects of Nd3+ on Calcium-Dependent Processes in Isolated Rat Heart Mitochondria and Frog Heart Muscle

  • S. M. KorotkovEmail author
  • C. V. Sobol
  • I. V. Schemarova
  • V. V. Furaev
  • A. V. Novozhilov
  • V. P. Nesterov
Article
  • 12 Downloads

Abstract

The inotropic and chronotropic effects of neodymium ions (Nd3+) on the heart muscle of a frog Rana ridibunda and the influence of Nd3+ on respiration, swelling, and potential (∆Ψmito) of Ca2+-loaded rat heart mitochondria (RHM) were studied. It was found that Nd3+ reduced the amplitude and frequency of spontaneous heart contraction (Fmax); Nd3+ also prevented a short-term increase in Ca2+-induced basal respiration of mitochondria and their swelling in salt media, as well as a decrease of ∆Ψmito on the inner mitochondrial membrane (IMM). At the same time, Nd3+ slightly affected mitochondrial respiration in state 3 or in 2,4-dinitrophenol (DNP)-uncoupled state. These effects of Nd3+ may indicate that Nd3+ inhibits the mitochondrial permeability transition pore (MPTP) opening, which is formed in calcium loaded mitochondria. The data obtained are important for a better understanding of the mechanisms of action of rare earth elements on Ca2+-dependent processes in the myocardium of vertebrates.

Keywords:

myocardium inotropic effect contractility Nd3+ Ca2+ mitochondrial respiration ∆Ψmito 

Notes

REFERENCES

  1. 1.
    Kieffer F. 1990. Metals and their composition in the environment. Ed. Merian E. Weinheim, Germany: Wiley–VCH.Google Scholar
  2. 2.
    Hallab N.J., Anderson S., Caicedo M., Jacobs J.J. 2006. Zirconium and niobium affect human osteoblasts, fibroblasts, and lymphocytes in a similar manner to more traditional implant alloy metals. J. ASTM Int. 3, 429–440.CrossRefGoogle Scholar
  3. 3.
    Saghiri M.A., Orangi J., Asatourian A., Sorenson C.M., Sheibani N. 2016. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb). Crit. Rev. Oncol. Hematol. 98, 290–301.CrossRefGoogle Scholar
  4. 4.
    Ebert A., Stangl J., Kühn R., Schafhauser W., Urologe A. 2003. The frequency-doubled double-pulse Neodym:YAG laser lithotripter (FREDDY) in lithotripsy of urinary stones. First clinical experience. Urologe A. 42 (6), 825–833.CrossRefGoogle Scholar
  5. 5.
    Kramer M.W., Bach T., Wolters M., Imkamp F., Gross A.J., Kuczyk M.A., Merseburger A.S., Herrmann T.R. 2011. Current evidence for transurethral laser therapy of non-muscle invasive bladder cancer. World J. Urol. 29 (4), 433–442.CrossRefGoogle Scholar
  6. 6.
    Sobol C.V., Korotkov S.M., Nesterov V.P. 2014. Inotropic effect of the new probiotic product on myocardial contractility. Comparison with diazoxide. Biofizika (Rus.). 59 (5), 959–966.Google Scholar
  7. 7.
    Korotkov S.M., Nesterov V.P., Demina I.N. 2009. Effect of sodium load of the matrix on properties of isolated rat heart mitochondria. Doklady Biochemistry and Biophysics. 424 (1), 56–60.CrossRefGoogle Scholar
  8. 8.
    Korotkov S.M., Emel’yanova L.V., Brailovskaya I.V. Nesterov V.P. 2012. Effects of pinacidil and calcium on isolated rat heart mitochondria. Doklady Biochemistry and Biophysics. 443 (1), 113–117.CrossRefGoogle Scholar
  9. 9.
    Shemarova I.V., Sobol K.V., Korotkov S.M., Nesterov V.P. 2014. Action of yttrium on calcium-dependent processes in the myocardium of vertebrates. Zh. Evolutsionnoy Biokhimii i Fiziologii (Rus.). 50 (3), 196–200.Google Scholar
  10. 10.
    Shemarova I.V., Nesterov V.P., Korotkov S.M. 2013. Action of La3+ on the systems providing contractility of vertebrate myocardium. Zh. Evolutsionnoy Biokhimii i Fiziologii (Rus.). 49 (4), 278–284.Google Scholar
  11. 11.
    Shemarova I.V., Korotkov S.M., Demina I.N., Nesterov V.P. 2010. Effect of oxidative processes in mitochondria on cardiac muscle contractility. The Effects of Ni2+. Zh. Evolutsionnoy Biokhimii i Fiziologii (Rus.). 46 (2), 138–142.Google Scholar
  12. 12.
    Shemarova I.V., Korotkov S.M., Nesterov V.P. 2011. The influence of oxidative processes in the mitochondria in cardiac muscle contractility in the frog Rana temporaria. Actions of Cd2+. Zh. Evolutsionnoy Biokhimii i Fiziologii (Rus.). 47 (4), 306–310.Google Scholar
  13. 13.
    Bers D.M. 2002. Cardiac excitation and contraction coupling. Nature. 415 (6868), 198–205.CrossRefGoogle Scholar
  14. 14.
    Talbert R.L., Bassi N.I., 1983. Update agents blocking calcium channels. Clin. Pharmacy. 2, 403–416.Google Scholar
  15. 15.
    Biagi B.A., Enyeart J.J. 1990. Gadolinium blocks low- and high-threshold calcium currents in pituitary cells. Am. J. Physiol. 259, C515–C520.CrossRefGoogle Scholar
  16. 16.
    Korotkov S.M., Sobol C.V., Shemarova I.V., Furaev V.V., Nesterov V.P. 2016. A comparative study of the effect of Y3+ on the calcium-dependent processes in the heart muscle of the frog and in the mitochondria of rat cardiomyocytes. Zh. Evolutsionnoy Biokhimii i Fiziologii (Rus.). 52 (3), 177–183.Google Scholar
  17. 17.
    Gschneidner K.A., Bünzli J.C., Pecharsky V.K. 2011. Handbook of the physics and chemistry of rare earths. North Holland: Elsevier.Google Scholar
  18. 18.
    Helli P.B., Pertens E., Janssen L.J. 2005. Cyclopiazonic acid activates a Ca2+-permeable, nonselective cation conductance in porcine and bovine tracheal smooth muscle. J. Appl. Physiol. 99 (5), 1759–1768.CrossRefGoogle Scholar
  19. 19.
    Kasparin F.O. 2000. Kinetika electrogennogo transporta dvuhvelentnih kationov v mitohondriyakh. (Kinetics of electrogenic transport of bivalent cations in mitochondria). Extended Abstract of Cand. Sci. Dissertation, Moscow state University, M., 2000.Google Scholar
  20. 20.
    Szabo I., Zoratti M. 2014. Mitochondrial channels: Ion fluxes and more. Physiol Rev. 94 (2), 519–608.CrossRefGoogle Scholar
  21. 21.
    Biasutto L., Azzolini M., Szabò I., Zoratti M. 2016. The mitochondrial permeability transition pore in AD 2016: An update. Biochim. Biophys. Acta. 1863 (10), 2515–2530.Google Scholar
  22. 22.
    Shemarova I.V., Korotkov S.M., Nesterov V.P. 2015. The mechanisms of action of Li+ on the myocardium of vertebrates. Zh. Evolutsionnoy Biokhimii i Fiziologii (Rus.). 51 (3), 181–186.Google Scholar
  23. 23.
    Jung D.W., Brierley G.P. 1984. The permeability of uncoupled heart mitochondria to potassium ion. J. Biol. Chem. 259 (11), 6904–6911.Google Scholar
  24. 24.
    Korotkov S.M., Glazunov V.V., Nikitina E.R. 1997. Respiration and ion permeability of the inner membrane in rat liver “sodium” mitochondria. Tsitologiya (Rus.). 39 (11), 1046–1054.Google Scholar
  25. 25.
    Brierley G.P., Jurkowitz M., Scott K.M., Merola A.J. 1970. Ion transport by heart mitochondria. Factors affecting passive osmotic swelling of isolated mitochondria. J. Biol. Chem. 245 (20), 5404–5411.Google Scholar
  26. 26.
    Korotkov S., Konovalova S., Emelyanova L., Brailovskaya I. 2014. Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. J. Inorg. Biochem. 141 (1), 1–9.CrossRefGoogle Scholar
  27. 27.
    Korotkov S.M., Nesterov V.P., Brailovskaya I.V., Furaev V.V., Novozhilov A.V. 2013. Tl+ induces both cationic and transition pore permeability in the inner membrane of rat heart mitochondria. J. Bioenerg. Biomembr. 45 (6), 531–539.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. M. Korotkov
    • 1
    Email author
  • C. V. Sobol
    • 1
  • I. V. Schemarova
    • 1
  • V. V. Furaev
    • 1
  • A. V. Novozhilov
    • 1
  • V. P. Nesterov
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations