Skip to main content
Log in

Acetylcholinesterase Inhibitor Paraoxon Intensifies Oxidative Stress Induced in Rat Erythrocytes In Vitro

  • ARTICLES
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Isoform H of acetylcholinesterase (AChE) is located on the outer surface of erythrocytes; its inhibition with organophosphorus compounds (OPC) may impair structural and functional properties of erythrocytes. The aim of this study was to elucidate the effects of paraoxon (POX) on the osmotic resistance, the level of reactive oxygen species (ROS), intracellular esterase activity, and externalization of phosphatidylserine in rat erythrocytes under oxidative stress induced by tert-butyl hydroperoxide (tBH). It has been found that POX did not affect the level of ROS and the activity of intracellular esterases; however, under conditions of induced oxidative stress, it potentiated the effects associated with impairment of the erythrocyte deformation characteristics and provoked cell death associated with externalization of phosphatidylserine. The effects of POX were not caused by the solvent DMSO and were observed only in the calcium containing medium. The results obtained with the in vitro model on the combined effects of the primary specific and secondary nonspecific factors on erythrocytes may be of help in the development or improvement of combined therapeutics for acute poisonings and the prevention of their consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Daniels G. 2007. Functions of red cell surface proteins. Vox Sang. 93 (4), 331–340.

    Article  CAS  PubMed  Google Scholar 

  2. Officioso A., Manna C., Alzoubi K., Lang F. 2016. Bromfenvinphos induced suicidal death of human erythrocytes. Pestic Biochem. Physiol. 126, 58–63.

    Article  CAS  PubMed  Google Scholar 

  3. Szatkowska B., Bukowska B., Huras B. 2011. The effect of bromfenvinphos and its impurities on human erythrocyte. Food Chem. Toxicol. 49 (2), 502–507.

    Article  CAS  PubMed  Google Scholar 

  4. Sosnowska B., Huras B., Bukowska B. 2015. Oxidative stress in human erythrocytes treated with bromfenvinphos and its impurities. Pestic Biochem. Physiol. 118, 43–49.

    Article  CAS  PubMed  Google Scholar 

  5. Santos N.C., Figueira-Coelho J., Saldanha C., Martins-Silva J. 2002. Biochemical, biophysical and haemorheological effects of dimethylsulphoxide on human erythrocyte calcium loading. Cell Calcium. 31 (4), 183–188.

    Article  CAS  PubMed  Google Scholar 

  6. Goncharov N.V., Prokofieva D.S., Voitenko N.G., Babakov V.N., Glashkina L.M. 2010. Molecular mechanisms of cholinergic regulation and dysregulation. Toksikol. vestnik (Rus.). 2, 5–10.

  7. Nadeev, A.D., Zinchenko V.P., Avdonin, P.V., Goncharov N.V. 2014. Toxic and signaling effects of reactive oxygen species. Toksikologicheskiy vestnik (Rus.). 2, 22–27.

  8. Mandal D., Moitra P.K., Saha S., Basu J. 2002. Caspase 3 regulates phosphatidylserine externalization and phagocytosis of oxidatively stressed erythrocytes. FEBS Lett. 513 (2–3), 184–188.

    Article  CAS  PubMed  Google Scholar 

  9. Iuchi Y. 2012. Anemia caused by oxidative stress, anemia. Dr. Donald Silverberg (Ed.), InTech, Available from: http://www.intechopen.com/books/anemia/anemia-caused-byoxidative-stress.

  10. Mindukshev I.V., Roukoyatkina N.I., Dobrilko I.A., Skwirczynskaya E.A., Nikitina E.R., Krivoshlyk V.V., Gambaryan S.P., Krivchenko A.I. 2013. Features of apoptosis of nuclear-free cells: Platelets and erythrocytes. Ross. Fisiol. zhurnal (Rus.). 99 (1), 92–110.

  11. Walski T., Chludzińska L., Komorowska M., Witkiewicz W. 2014. Individual osmotic fragility distribution: A new parameter for determination of the osmotic properties of human red blood cells. Biomed. Res. Int. doi https://doi.org/10.1155/2014/162102

  12. Benesch R.E., Benesch R., Yung S. 1973. Equations for the spectrophotometric analysis of hemoglobin mixtures. Anal. Biochem. 55, 245–248.

    Article  CAS  PubMed  Google Scholar 

  13. Mindukshev I.V., Krivoshlyk V.V., Dobrilko I.A., Goncharov N.V. Vivulenets E.V., Kuznetsov S.V., Krivchenko A.I. 2010. Violation of deformation and transport characteristics of erythrocytes in the development of apoptosis. Biol. membrany (Rus.). 27 (1), 28–38.

  14. Mindukshev I.V., Senchenkova E.Y., Goncharov N.V., Vivulanets E.V., Krivoshlyk V.V. 2010. New methods for studying platelets and red blood cells, based upon the low-angle light scattering technique. In: Hemorheology: Blood Flow, Disturbance and Prognosis. Ed. F. Columbus, N.Y.: Nova Sci. Publ., p. 87–124.

  15. Skverchynskaya E.A., Nikitina E.R., Sudnitsyna J.S., Krivchenko A.I., Gambaryan, S.P., Mindukshev I.V. 2015. Hemolysis of erythrocytes or formation of microparticles in apoptosis under oxidative stress? In: Receptors and intracellular signaling (Rus). 2, 564–569. https:// elibrary.ru/item.asp?id=28974843, https://elibrary.ru/ item.asp?id=29279171.

  16. Spring F.A., Gardner B., Anstee D.J. 1992. Evidence that the antigens of the Yt blood group system are located on human erythrocyte acetylcholinesterase. Blood. 80 (8), 2136–2141.

    CAS  PubMed  Google Scholar 

  17. Wessler I., Kirkpatrick C.J., Racké K. 1999. The cholinergic ‘pitfall’: Acetylcholine, a universal cell molecule in biological systems, including humans. Clin. Exp. Pharmacol. Physiol. 26 (3), 198–205.

    Article  CAS  PubMed  Google Scholar 

  18. Wessler I., Kilbinger H., Bittinger F., Unger R., Kirkpatrick C.J. 2003. The non-neuronal cholinergic system in humans: Expression, function and pathophysiology. Life Sci. 72 (18–19), 2055–2061.

    Article  CAS  PubMed  Google Scholar 

  19. Carvalho F.A., Mesquita R., Martins-Silva J., Saldanha C. 2004. Acetylcholine and choline effects on erythrocyte nitrite and nitrate levels. J. App.l Toxicol. 24 (6), 419–427.

    Article  CAS  Google Scholar 

  20. Carvalho F.A., Almeida J.P., Fernandes I.O., Freitas-Santos T., Saldanha C. 2008. Non-neuronal cholinergic system and signal transduction pathways mediated by band 3 in red blood cells. Clin. Hemorheol. Microcirc. 40 (3), 207–227.

    CAS  PubMed  Google Scholar 

  21. Teixeira P., Duro N., Napoleão P., Saldanha C. 2015. Acetylcholinesterase conformational states influence nitric oxide mobilization in the erythrocyte. J. Membr. Biol. 248 (2), 349–354.

    Article  CAS  PubMed  Google Scholar 

  22. Prall Y.G., Gambhir K.K., Ampy F.R. 1998. Acetylcholinesterase: An enzymatic marker of human red blood cell aging. Life Sci. 63 (3), 177–184.

    Article  CAS  PubMed  Google Scholar 

  23. Shmurak, V.I., Kurdyukov, I.D., Nadeev A.D., Voitenko N.G., Glaskina L.M., Goncharov N.V. 2012. Biochemical markers of intoxication with organophosphorus toxic substances. Toksikol. vestnik (Rus.). 4, 30–34.

  24. Hundekari I.A., Suryakar A.N., Rathi D.B. 2013. Acute organophosphorus pesticide poisoning in North Karnataka, India: Oxidative damage, haemoglobin level and total leukocyte. Afr. Health Sci. 13 (1), 129–136.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mindukshev I.V., Krivoshlyk V.V., Ermolaeva E.E., Dobrylko I.A., Senchenkov E.V., Goncharov N.V., Jenkins R.O., Krivchenko A.I. 2007. Necrotic and apoptotic volume changes of erythrocytes investigated by low-angle light scattering technique. Spectroscopy Int. J. 21 (2), 105–120.

    Article  CAS  Google Scholar 

  26. Zipser Y., Piade A., Barbul A., Korenstein R., Kosower N.S. 2002. Ca2+ promotes erythrocyte band 3 tyrosine phosphorylation via dissociation of phosphotyrosine phosphatase from band 3. Biochem. J. 368 (1), 137–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaik N., Lupescu A., Lang F. 2012. Sunitinib-sensitive suicidal erythrocyte death. Cell Physiol. Biochem. 30 (3), 512–522.

    Article  CAS  PubMed  Google Scholar 

  28. Bogdanova A., Makhro A., Wang J., Lipp P., Kaestner L. 2013. Calcium in red blood cells–a perilous balance. Int. J. Mol. Sci. 14 (5), 9848–9872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Experiments on the Navios flow cytometer have been conducted in the SUC of the IEPB RAS. The work was supported by the Russian Science Foundation (project no. 16-15-00199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Goncharov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mindukshev, I.V., Skverchinskaya, E.A., Khmelevskoy, D.A. et al. Acetylcholinesterase Inhibitor Paraoxon Intensifies Oxidative Stress Induced in Rat Erythrocytes In Vitro. Biochem. Moscow Suppl. Ser. A 13, 85–91 (2019). https://doi.org/10.1134/S1990747819010070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747819010070

Keywords:

Navigation