Skip to main content
Log in

Effect of Noradrenaline on the Kinetics of Evoked Acetylcholine Secretion in Mouse Neuromuscular Junction

  • ARTICLES
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

In contrast to frog neuromuscular synapses, where noradrenaline (norepinephrine) and its analogues caused synchronization of the acetylcholine release process, in mouse diaphragm endplates noradrenaline increased the degree of asynchrony of neurosecretion. The effect of noradrenaline on release timing persisted at different levels of external calcium ions (0.25–2.0 mM) and was abolished in presence of both α- and β‑adrenoblockers phentolamine and propranolol. The computer reconstruction of multiquantal endplate currents accounting for experimentally observed modification of release kinetics under noradrenaline showed that the rise time of postsynaptic response changes to a greater extent than the amplitude and falling phase of the multiquantal responses. We conclude that there exists a principal difference in the action of noradrenaline in the cholinergic neuromuscular synapses of warm-blooded and cold-blooded animals that can be accounted for by the differences in the type of adrenoreceptors involved in the modulation of synaptic transmission and/or in the involvement of distinct intracellular pathways triggered by receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bowman W., Nott M. 1969. Actions of sympathomimetic amines and their antagonists on skeletal muscle. Pharmacol. Rev. 21, 27–72.

    CAS  PubMed  Google Scholar 

  2. Fellenius E., Hedberg R., Holmberg E., Waldeck B. 1980. Functional and metabolic effects of terbutaline and propranolol in fast- and slow-contracting skeletal muscle in vitro. Acta Physiol. Scand. 109, 89–95.

    Article  CAS  PubMed  Google Scholar 

  3. Cairns S., Borrani, F. 2015. β-Adrenergic modulation of skeletal muscle contraction: Key role of excitation–contraction coupling. J. Physiol. 593, 4713–4727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moravec J., Melichar I., Jansky L., Vyskocil F. 1973. Effect of hibernation and noradrenaline on the resting state of neuromuscular junction of golden hamster (Mesocricetus auratus). Pflugers Archiv. 345, 93–106.

    Article  CAS  PubMed  Google Scholar 

  5. Wessler I. 1992. Acetylcholine at motor nerves: Storage, release, and presynaptic modulation by autoreceptors and adrenoceptors. Int. Rev. Neurobiol. 34, 283–384.

    Article  CAS  PubMed  Google Scholar 

  6. Khan M., Lustrinod D., Silveira W.A., Wild F., Straka T., Issop Y., O’Connor E., Cox D., Reischl M., Marquardt T., Labeit D., Labeit S, Benoit E., Molgó J., Lochmüller H., Witzemann V., Kettelhut I.C., Navegantes L.C., Pozzan T., Rudolf R. 2016. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. Proc. Natl. Acad. Sci. USA. 113, 746–750.

    Article  CAS  PubMed  Google Scholar 

  7. Kuba K., Tomita T. 1972. Effects of noradrenaline on miniature end-plate potentials and on end-plate potential. J. Theor. Biol. 36, 81–88.

    Article  CAS  PubMed  Google Scholar 

  8. Jenkinson D.H., Stamenovi B.A., Whitaker B. 1968. The effect of noradrenaline on the end-plate potential in twitch fibres of the frog. J. Physiol. 195, 743–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim S., Muir T. 1983. Microelectrode recording of the effects of agonists and antagonists on alpha-adrenoceptors on rat somatic nerve terminals. Br. J. Pharmacol. 80, 41–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wessler J., Anschuetz S. 1988. Beta-adrenoreceptor stimulation enhances transmitter output from the rat phrenic nerve. Br. J. Pharmacol. 94, 669–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yawo H. 1996. Noradrenaline modulates transmitter release by enhancing the Ca2+ sensitivity of exocytosis in the chick ciliary presynaptic terminal. J Physiol. Lond. 493, 385–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van der Kloot W., Van der Kloot T.E. 1986. Catecholamines, insulin and ACTH increase quantal size at the frog neuromuscular junction. Brain Research. 376, 378–381.

    Article  CAS  PubMed  Google Scholar 

  13. Koketsu K., Miyagawa M., Akasu T., 1982. Catecholamine modulates nicotinic ACh-receptor sensitivity. Brain Research. 236, 487–491.

    Article  CAS  PubMed  Google Scholar 

  14. Sabatini W., Regehr W. 1999. Timing of synaptic transmission. Annu. Rev. Physiol. 61, 521–542.

    Article  CAS  PubMed  Google Scholar 

  15. Lin J.-W., Faber S. 2002. Modulation of synaptic delay during synaptic plasticity. Trends Neurosci. 25, 449–455.

    Article  CAS  PubMed  Google Scholar 

  16. Bukharaeva E., Nikolskii E. 2012. Changes in the kinetics of evoked secretion of transmitter quanta – an effective mechanism modulating the synaptic transmission of excitation. Neurosci. Behav. Physiol. 42, 153–160.

    Article  CAS  Google Scholar 

  17. Bukcharaeva E., Kim K., Moravec J., Nikolsky E., Vyskocil F. 1999. Noradrenaline synchronizes evoked quantal release at frog neuromuscular junctions. J. Physiol. Lond. 517, 879–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bukharaeva E., Samigullin D., Nikolsky E., Vyskocil F. 2002. Protein kinase A cascade regulates quantal release dispersion at frog muscle endplate. J. Physiol. 538, 837–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kovyazina I., Tsentsevitsky A., Nikolsky E., Bukharaeva E.A. 2010. Kinetics of acetylcholine quanta release at the neuromuscular junction during high-frequency nerve stimulation. Eur. J. Neurosci. 32, 1480–1489.

    Article  PubMed  Google Scholar 

  20. Tsentsevitsky A., Kovyazina I., Nikolsky E., Bukharaeva E., Giniatullin R. 2013. Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction. Neurosci. 248, 699–707.

    Article  CAS  Google Scholar 

  21. Kozachuk W., Phillis J. 1977. The role of calcium ions in noradrenaline-facilitated hyperpolarization on frog skeletal muscle. Gen. Pharmacol. 9, 235–238.

    Article  Google Scholar 

  22. Bergman H., Glusman S., Harris-Warrick R.M., Kravitz E.A., Nussinovitch I., Rahamimoff R. 1991. Noradrenaline augments tetanic potentiation of transmitter release by a calcium dependent process. Brain Res. 214, 200–204.

    Article  Google Scholar 

  23. Dodge F., Rahamimoff R. 1967. Cooperative action of calcium ions in transmitter release at the neuromuscular junctions. J. Physiol. Lond. 193, 419–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vasin A., Samigullin D., Bukharaeva E. 2010. The role of calcium in modulation of the kinetics of synchronous and asynchronous quantal release at the neuromuscular junction. Biochemistry (Moscow) Suppl. Series A: Membr. Cell Biol. 4, 77–84.

    Google Scholar 

  25. Fitzgerald P.J. 2013. Elevated norepinephrine may be an etiological factor in a wide range of diseases: Age-related macular degeneration, systemic lupus erythematosus, atrial fibrillation, metabolic syndrome. Med. Hypotheses. 80, 558–563.

    Article  CAS  PubMed  Google Scholar 

  26. Ghasemi M., Mehranfard N. 2018. Mechanisms underlying anticonvulsant and proconvulsant actions of norepinephrine. Neuropharmacology. 137, 297–308.

    Article  CAS  PubMed  Google Scholar 

  27. Ghazanfari N., Morsch M., Tse N., Reddel S.W., Phillips W.D. 2014. Effects of the ß2-adrenoceptor agonist, albuterol, in a mouse model of anti-MuSK myasthenia gravis. PLoS ONE. 9 (2), e87840. doi 10.1371

  28. Paik H., Chung A., Park H. 2015. Repurpose terbutaline sulfate for amyotrophic lateral sclerosis using electronic medical records. Sci. Rep. 5, 8580–8585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. Victor Ilyin for critical reading and helpful comments on the manuscript. The work was supported by the Russian Science Foundation (project no. 18-15-00046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kovyazina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The Protocol of experiments was approved by the Commission on Bioethics of Kazan State Medical University.

Additional information

The article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsentsevitsky, A.N., Kovyazina, I.V., Bukharaeva, E.A. et al. Effect of Noradrenaline on the Kinetics of Evoked Acetylcholine Secretion in Mouse Neuromuscular Junction. Biochem. Moscow Suppl. Ser. A 12, 327–332 (2018). https://doi.org/10.1134/S1990747818070012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818070012

Keywords:

Navigation