Purinergic Regulation of Transient Calcium-Dependent Chloride Current Ito2 in Rat Ventricular Myocardium

  • T. S. FilatovaEmail author
  • D. V. Abramochkin


Diadenosine polyphosphates (DAP) are now considered as a new class of endogenous regulatory cardiotropic compounds. In previous studies DAP were demonstrated to affect cardiac electrical activity and contractility in various animal species including rats. DAP decreased the action potential duration and reduced the contractility of the rat myocardium. At the same time, DAP did not affect repolarizing potassium currents (IK1, IKACh, Ito1, IKur), which normally participate in repolarization after the action potentials (AP), and had a little effect on L-type calcium current in isolated rat cardiomyocytes. However, in addition to these ionic currents, AP duration can be regulated via chloride currents. In this study the presence of a transient inward calcium-dependent chloride current Ito2 has been shown in rat ventricular myocardium and an influence of DAP on this current has been demonstrated for the first time. Ionic currents were recorded in isolated rat ventricular cardiomyocytes using whole-cell patch clamp method. Action potentials were recorded in isolated preparations of rat right ventricle with sharp glass microelectrodes. In the absence of Na+ and K+ and in the presence of potassium current blockers 4-aminopyridine (5 × 10–3 M) and tetraethylammonium (1.5 × 10–2 M) transient outward current was present in ventricular myocytes. This current was sensitive to non-selective chloride channel blocker 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS, 10–5 M), L-type calcium current blocker nifedipine (10–5 M), and a selective blocker of calcium-dependent chloride channels 6-(1,1-dimethyl ethyl ethyl)-2-[(2-furanyl carbonyl)amino]-4,5,6,7-tetrahydrobenzo[b]thiophen-3 carbonic acid (CaCCinh-A01, 10–5 M). In the presence of diadenosine tetraphosphate (Ap4A, 10–4 M) in the external solution the peak amplitude of the current increased by 44 ± 11%. Diadenosine pentaphosphate (Ap5A) and NAD+ failed to produce any significant effects on the current density. In isolated preparations of rat ventricular myocardium DIDS (10–5 M) and CaCCinh-A01 (10–5 M) blocked the Ap4A-induced acceleration of repolarization. Thus, the effects of Ap4A on cardiac electrical activity in rats are at least partially mediated by its influence on the amplitude of repolarizing chloride current Ito2.


heart action potential chloride current diadenosine polyphosphates NAD+ 



  1. 1.
    Baxi M.D., Vishwanatha J.K. 1995. Diadenosine polyphosphates: Their biological and pharmacological significance. J. Pharmacol. Toxicol. Methods. 33 (3), 121–128.CrossRefGoogle Scholar
  2. 2.
    Hoyle C.H., Hilderman R.H., Pintor J.J., Schlüter H., King B.F. 2001. Diadenosine polyphosphates as extracellular signal molecules. Drug Dev. Res. 52 (1–2), 260–273.CrossRefGoogle Scholar
  3. 3.
    Mutafova-Yambolieva V.N., Durnin L. 2014. The purinergic neurotransmitter revisited: A single substance or multiple players? Pharmacology & Therapeutics. 144 (2), 162–191.CrossRefGoogle Scholar
  4. 4.
    Flores N.A., Stavrou B.M., Sheridan D.J. 1999. The effects of diadenosine polyphosphates on the cardiovascular system. Cardiovasc. Res. 42, 15–26.CrossRefGoogle Scholar
  5. 5.
    Smyth L.M., Yamboliev I.A., Mutafova-Yambolieva V.N. 2009. N-type and P/Q-type calcium channels regulate differentially the release of noradrenaline, ATP and β‑NAD in blood vessels. Neuropharmacology. 56 (2), 368–378.CrossRefGoogle Scholar
  6. 6.
    Pustovit K.B., Kuzmin V.S., Sukhova G.S. 2014. The influence of extracellular NAD+ on contractile and bioelectrical activity of rat heart. Ros. Fiziol. Zhurnal im. Sechenova (Rus.). 100 (4), 445–457.Google Scholar
  7. 7.
    Pakhomov N.V., Pustovit K.B., Abramochkin D.V., Kuzmin V.S. 2017. The role of diadenosine pentaphosphate and nicotinamide adenine dinucleotide (NAD+) as potential nucleotide comediators in the adrenergic regulation of cardiac function. Neurochem. J. 11 (1), 63–71.CrossRefGoogle Scholar
  8. 8.
    Steinmetz M., Schlatter E., Boudier H.A.J.S., Rahn K.H., De Mey J.G.R. 2000. Diadenosine polyphosphates cause contraction and relaxation in isolated rat resistance arteries. J. Pharmacol. Exp. Ther. 294 (3), 1175–1181.Google Scholar
  9. 9.
    Pustovit K.B., Ivanova A.D., Kuz’min V.S. 2018. Extracellular NAD+ suppresses adrenergic effects in the atrial myocardium of rats during the early postnatal ontogeny. Bull. Eksp. Biol. Med. (Rus.). 165, 4–8.Google Scholar
  10. 10.
    Pustovit K.B., Potekhina V.M., Pakhomov, N.V., Kuzmin, V.S. 2018. The effects of extracellular diadenosinetetraphosphate on the bioelectrical activity of atrial and ventricular rat myocardium at early stages of postnatal ontogeny. Vestnik Moskovskogo Univ. Seria 16, Biologia (Rus.). 73 (1), 52–59.Google Scholar
  11. 11.
    Pustovit K.B., Kuzmin V.S., Abramochkin D.V. 2016. Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors. Naunyn Schmiedebergs Arch. Pharmacol. 389 (3), 303–313.CrossRefGoogle Scholar
  12. 12.
    Abramochkin D.V., Pustovit K.B., Filatova T.S. 2015. Effects of diadenosine polyphosphates on inward rectifier potassium currents in rat cardiomyocytes.Vestnik Moskovskogo Univ. Seria 16, Biologia (Rus.). 70 (4), 153–157.Google Scholar
  13. 13.
    Kuzmin V.S., Pustovit K.B. 2016. Effekty i mekhanizmy deistvia diadenozinovykh polifosfatov i ikh proizvodnykh v serdtse mlekopitayushchikh (Effects and mechanisms of action of diadenosine polyphosphates and their derivatives in mammalian heart). Moscow: Universitetskaya kniga.Google Scholar
  14. 14.
    Kuzmin V.S., Rosenstrauch L.V. 2010. The ionic mechanisms of action of class III antiarrhytmic drugs. Kardiologia (Rus.). 7, 49–61.Google Scholar
  15. 15.
    Bokeria O.L., Akhobekov A.A. 2014. Ionic channels and their role in the development of cardiac arrhythmias. Annaly Aritmologii (Rus.). 11 (3), 176–184.CrossRefGoogle Scholar
  16. 16.
    Hiraoka M., Kawano S., Hirano Y., Furukawa T. 1998. Role of cardiac chloride currents in changes in action potential characteristics and arrhythmias. Cardiovasc. Res. 40, 23–33.CrossRefGoogle Scholar
  17. 17.
    Zygmunt A.C., Gibbons W. 1992. Properties of the calcium-activated chloride current in heart. J. Gen. Physiol. 99 (3), 391–414.CrossRefGoogle Scholar
  18. 18.
    Xu Y., Dong P.H., Zhang Z., Ahmed G.U., Chiamvimonvat N. 2002. Presence of a calcium-activated chloride current in mouse ventricular myocytes. Am. J. Physiol. Heart. Circ. Physiol. 283, H302–H314.CrossRefGoogle Scholar
  19. 19.
    Isenberg G., Klockner U. 1982. Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium”. Pflugers Arch. 395 (1), 6–18.CrossRefGoogle Scholar
  20. 20.
    Ye Z., Wu M.M., Wang C.Y., Li Y.C., Gong Y.F., Zhang J., Wang Q.S., Song B.L., Yu K., Hartzell H.C., Duan D.D., Zhao D., Zhang Z.R. 2015. Characterization of cardiac anoctamin1 Ca2+-activated chloride channels and functional role in ischemia-induced arrhythmias. J. Cell Physiol. 230 (2), 337–346.CrossRefGoogle Scholar
  21. 21.
    Pogorelov A., Pogorelova V., Pogorelova M. 2010. Does an electroneutral K+/Cl antiport occur in cardiomyocyte during acute ischemia? Biophysics. 55 (5), 771–774.CrossRefGoogle Scholar
  22. 22.
    Abramochkin D.V., Borodinova A.A., Nikolsky E.E., Rosenstrauch L.V. 2012. Modulation of non-quantum acetylcholine secretion by nitric oxide in the myocardium of rat right atrium. Biol. Membrany (Rus.). 29 (5), 317–323. (English version: Nitric oxide modulates intensity of non-quantal acetylcholine release in myocardium of the right atrium of rat. Biochemistry (Moscow) Suppl. Series A. 6 (4) 288–293).Google Scholar
  23. 23.
    Pakhomov N., Pustovit K., Potekhina V., Filatova T., Kuzmin V., Abramochkin D. 2018. Negative inotropic effects of diadenosine tetraphosphate are mediated by protein kinase C and phosphodiesterases stimulation in the rat heart. Eur. J. Pharmacol. 820, 97–105.CrossRefGoogle Scholar
  24. 24.
    Oudit G.Y., Kassiri Z., Sah R., Ramirez R.J., Zobel C., Backx P.H. 2001. The molecular physiology of the cardiac transient outward potassium current (Ito) in normal and diseased myocardium. J. Mol. Cell Cardiol. 33 (5), 851–872.CrossRefGoogle Scholar
  25. 25.
    Liu Y., Zhang H., Huang D., Qi J., Xu J., Gao H., Du X., Gamper N., Zhang H. 2015. Characterization of the effects of Cl channel modulators on TMEM16A and bestrophin-1 Ca2+ activated Cl channels. Pflugers Arch. 467 (7), 1417–1430.CrossRefGoogle Scholar
  26. 26.
    Cho H., Oh U. 2013. Anoctamin 1 mediates thermal pain as a heat sensor. Curr. Neuropharmacol. 11 (6), 641–651.CrossRefGoogle Scholar
  27. 27.
    Eggermont J. 2004. Calcium-activated chloride channels: (Un)known, (un)loved? Proc. Am. Thorac. Soc. 1 (1), 22–27.CrossRefGoogle Scholar
  28. 28.
    Tian Y., Schreiber R., Kunzelmann K. 2012. Anoctamins are a family of Ca2+-activated Cl channels. J. Cell Sci. 125 (Pt 21), 4991–4998.CrossRefGoogle Scholar
  29. 29.
    Pedemonte N., Galietta L.J. 2014. Structure and function of TMEM16 proteins (anoctamins). Physiol. Rev. 94 (2), 419–459.CrossRefGoogle Scholar
  30. 30.
    Horvath, B., Vaczi K., Hegyi B., Gonczi M., Dienes B., Kistamas K., Banyasz T., Magyar J., Baczko I., Varro A., Seprenyi G., Csernoch L., Nanasi P.P., Szentandrassy N. 2016. Sarcolemmal Ca2+ entry through L-type Ca2+ channels controls the profile of Ca2+-activated Cl current in canine ventricular myocytes. J. Mol. Cell Cardiol. 97, 125–139.CrossRefGoogle Scholar
  31. 31.
    O’Driscoll K.E., Hatton W.J., Burkin H.R., Leblanc N., Britton F.C. 2008. Expression, localization, and functional properties of Bestrophin 3 channel isolated from mouse heart. Am. J. Physiol. Cell Physiol. 295 (6), C1610–C1624.CrossRefGoogle Scholar
  32. 32.
    O’Driscoll K.E., Leblanc N., Hatton W.J., Britton F.C. 2009. Functional properties of murine bestrophin 1 channel. Biochem. Biophys. Res. Commun. 384 (4), 476–481.CrossRefGoogle Scholar
  33. 33.
    Pustovit K.B., Abramochkin D.V. 2016. Effects of nicotinamide adenine dinucleotide (NAD+) and diadenosine tetraphosphate (Ap4A) on electrical activity of working and pacemaker atrial myocardium in guinea pigs. Bull. Exp. Biol. Med. 160 (6), 733–736.CrossRefGoogle Scholar
  34. 34.
    Erlinge D., Burnstock G. 2008. P2 receptors in cardiovascular regulation and disease. Purinergic Signal. 4 (1), 1–20.CrossRefGoogle Scholar
  35. 35.
    Buvinic S., Briones R. Huidobro-Toro J.P. 2002. P2Y1 and P2Y2 receptors are coupled to the NO/cGMP pathway to vasodilate the rat arterial mesenteric bed. Br. J. Pharmacol. 136 (6), 847–856.CrossRefGoogle Scholar
  36. 36.
    Erb L., Weisman G.A. 2012. Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip. Rev. Membr. Transp. Signal. 1 (6), 789–803.CrossRefGoogle Scholar
  37. 37.
    Mitchell C., Syed N.I.H., Gurney A.M., Kennedy C. 2012. A Ca2+-dependent chloride current and Ca2+ influx via Cav1.2 ion channels play major roles in P2Y receptor-mediated pulmonary vasoconstriction. Br. J. Pharmacol. 166 (4), 1503–1512.CrossRefGoogle Scholar
  38. 38.
    Rajagopal, M., Kathpalia P.P., Thomas S.V., Pao A.C. 2011. Activation of P2Y1 and P2Y2 receptors induces chloride secretion via calcium-activated chloride channels in kidney inner medullary collecting duct cells. Am. J. Physiol. Renal Physiol. 301 (3), F544–F553.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Moscow Lomonosov State UniversityMoscowRussia
  2. 2.Pirogov Russian National Research Medical UniversityMoscowRussia
  3. 3.Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations