Skip to main content
Log in

The Role of Transmembrane Glycoproteins, Integrins and Serpentines in Platelet Adhesion and Activation

  • REVIEWS
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Platelets are unique cells of human body: they lack nucleus, are rather small in size (1–2 μm) and involved in several physiological functions, including hemostasis, immunity and angiogenesis. Platelets play a key role in the initiation of thrombosis upon injury of the blood vessels of the arterial bed, in which blood flows with high shear rates are observed. According to the generally accepted concepts, the reaction of platelets to endothelial injury at local shear rates of more than 1000 s–1 is the primary binding of the GPIb-IX-V receptor complex glycoproteins with von Willebrand factor, a large multimeric blood protein which can specifically bind to collagen fibers. For further performance of their functions, and first of all, for stable attachment to the injured surface, platelet has to be activated. There are more than ten types of receptors on the platelet membrane, which trigger several cascades of intracellular signaling that leads to the restructuring of the cytoskeleton, granule secretion and activation of integrins, which provide the ability of platelets to strong adhesion and aggregation. This review is focused on the biophysical aspects of the interaction of transmembrane glycoproteins and integrins with extracellular ligands, as well as modern ideas about the mechanisms of platelet activation that is necessary to stabilize their primary adhesion and aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Esmon C. 2009. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev. 23, 225–229.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nieswandt B.,Watson S. 2003. Platelet-collagen interaction: Is GPVI the central receptor? Blood. 102, 449–461.

    Article  CAS  PubMed  Google Scholar 

  3. Best D., Senis Y., Jarvis G., Eagleton H., Roberts D., Saito T., Jung S., Moroi M., Harrison P., Green F., Watson S. 2003. GPVI levels in platelets: Relationship to platelet function at high shear. Blood. 102, 2811–2818.

    Article  CAS  PubMed  Google Scholar 

  4. Herr A., Farndale R. 2009. Structural insights into the interactions between platelet receptors and fibrillar collagen. J. Biol. Chem. 284, 19781–19785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jung S., Takemura Y., Imamura Y., Hayashi T., Adachi E., Moroi M. 2009. Collagen-type specificity of glycoprotein VI as a determinant of platelet adhesion. Platelets. 19, 32–42.

    Article  CAS  Google Scholar 

  6. Savage B., Saldívar E., Ruggeri Z. 1996. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell. 84, 289–297.

    Article  CAS  PubMed  Google Scholar 

  7. Miura Y., Takahashi T., Jung S., Moroi M. 2002. Analysis of the interaction of platelet collagen receptor glycoprotein VI (GPVI) with collagen: A dimeric form of GPVI, but not the monomeric form, shows affinity to fibrous collagen. J. Biol. Chem. 277, 46197–46204.

    Article  CAS  PubMed  Google Scholar 

  8. Varga-Szabo D., Pleines I., Nieswandt B. 2008. Cell adhesion mechanisms in platelets. Arterioscler. Thromb. Vasc. Biol. 28, 403–412.

    Article  CAS  PubMed  Google Scholar 

  9. Colace T., Tormoen G., McCarty O., Diamond S. 2013. Microfluidics and coagulation biology. Annu. Rev. Biomed. Eng. 15, 283–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jackson S. 2007. The growing complexity of platelet aggregation. Blood. 109, 5087–5095.

    Article  CAS  PubMed  Google Scholar 

  11. Mody N., King M. 2008. Platelet adhesive dynamics. Part I: Characterization of platelet hydrodynamic collisions and wall effects. Biophys. J. 95, 2539–2555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim J., Zhang C., Zhang X., Springer T. 2010. A mechanically stabilized receptor–ligand flex-bond important in the vasculature. Nature. 466, 992–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Westein E., van der Meer A., Kuijpers M., Frimat J., van den Berg A., Heemskerk J. 2013. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc. Natl. Acad. Sci. USA. 110, 1357–1362.

    Article  PubMed  Google Scholar 

  14. Singh I., Themistou E., Porcar L., Neelamegham S. 2009. Fluid shear induces conformation change in human blood protein von Willebrand factor in solution. Biophys. J. 96, 2313–2320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang X., Halvorsen K., Zhang C., Wong W., Springer T. 2009. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science. 324, 1330–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schneider S., Nuschele S., Wixforth A., Gorzelanny C., Alexander-Katz A., Netz R., Schneider M. 2007. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl. Acad. Sci. USA. 104, 7899–7903.

    Article  CAS  PubMed  Google Scholar 

  17. Springer T. 2014. Von Willebrand factor, Jedi knight of the bloodstream. Blood. 124, 1412–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maxwell M., Westein E., Nesbitt W., Giuliano S., Dopheide S., Jackson S. 2007. Identification of a 2‑stage platelet aggregation process mediating shear-dependent thrombus formation. Blood. 109, 566–576.

    Article  CAS  PubMed  Google Scholar 

  19. Arya M., Anvari B., Romo G., Cruz M., Dong J., McIntire L., Moake J., López J. 2002. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: Studies using optical tweezers. Blood. 99, 3971–3977.

    Article  CAS  PubMed  Google Scholar 

  20. Nesbitt W., Westein E., Tovar-Lopez F., Tolouei E., Mitchell A., Fu J., Carberry J., Fouras A., Jackson S. 2009. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15, 665–673.

    Article  CAS  PubMed  Google Scholar 

  21. Baldauf C., Schneppenheim R., Stacklies W., Obser T., Pieconka A., Schneppenheim S., Budde U., Zhou J., Gräter F. 2009. Shear-induced unfolding activates von Willebrand factor A2 domain for proteolysis. J. Thromb. Haemost. 7, 2096–2105.

    Article  CAS  PubMed  Google Scholar 

  22. Goldman A., Cox R., Brenner H. 1967. Slow viscous motion of a sphere parallel to a plane wall-I Motion through a quiescent fluid. Chem. Eng. Sci. 22, 637–651.

    Article  CAS  Google Scholar 

  23. Goto S., Salomon D., Ikeda Y., Ruggeri Z. 1995. Characterization of the unique mechanism mediating the shear-dependent binding of soluble von Willebrand factor to platelets. J. Biol. Chem. 270, 23352–23361.

    Article  CAS  PubMed  Google Scholar 

  24. Miura S., Li C., Cao Z., Wang H., Wardell M., Sadler J. 2000. Interaction of von Willebrand factor domain A1 with platelet glycoprotein Ib. J. Biol. Chem. 275, 7539–7546.

    Article  CAS  PubMed  Google Scholar 

  25. Li Z., Delaney M., O’Brien K., Du X. 2010. Signaling during platelet adhesion and activation. Arterioscler. Thromb. Vasc. Biol. 30, 2341–2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Varga-Szabo D., Braun A., Nieswandt B. 2009. Calcium signaling in platelets.Thromb. Haemost. 7, 1057–1066.

    Article  CAS  Google Scholar 

  27. Heemskerk J., Mattheij N., Cosemans J. 2013. Platelet-based coagulation: Different populations, different functions. J. Thromb. Haemost. 11, 2–16.

    Article  CAS  PubMed  Google Scholar 

  28. Versteeg H., Heemskerk J., Levi M., Reitsma P. 2013. New fundamentals in hemostasis. Physiol. Rev. 93, 327–358.

    Article  CAS  PubMed  Google Scholar 

  29. Sveshnikova A., Ataullakhanov F., Panteleev M. 2015. Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1. Mol. Biosyst. 11, 1052–1060.

    Article  CAS  PubMed  Google Scholar 

  30. Shakhidzhanov S., Shaturny V., Panteleev M., Sveshnikova A. 2015. Modulation and pre-amplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation. Biochim. Biophys. Acta – Gen. Subj. 1850, 2518–2529.

    Article  CAS  Google Scholar 

  31. Obydennyi S., Sveshnikova A., Ataullakhanov F., Panteleev M. 2015. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in single platelets during activation. J. Thromb. Haemost. 13, 649.

    Google Scholar 

  32. Kroll M., Hellums J., McIntire L., Schafer A., Moake J. 1996. Platelets and shear stress. Blood. 88, 1525–1541.

    CAS  PubMed  Google Scholar 

  33. Andrews R., Arthur J., Gardiner E. 2014. Targeting GPVI as a novel antithrombotic strategy. J. Blood Med. 5, 59–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sullam P. 1998. Physical proximity and functional interplay of the glycoprotein Ib–IX–V complex and the Fc receptor Fcgamma RIIA on the platelet plasma membrane. J. Biol. Chem. 273, 5331–5336.

    Article  CAS  PubMed  Google Scholar 

  35. Berndt M., Metharom P., Andrews R. 2014. Primary haemostasis: Newer insights. Haemophilia. 20, 15–22.

    Article  CAS  PubMed  Google Scholar 

  36. Bryckaert M., Rosa J., Denis C., Lenting P. 2015. Of von Willebrand factor and platelets. Cell. Mol. Life Sci. 72, 307–326.

    Article  CAS  PubMed  Google Scholar 

  37. Gu M. 1999. Analysis of the roles of 14-3-3 in the platelet glycoprotein Ib-IX-mediated activation of integrin alphaiibbeta3 using a reconstituted mammalian cell expression model. J. Cell Biol. 147, 1085–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Riba R., Oberprieler N., Roberts W., Naseem K. 2006. Von Willebrand factor activates endothelial nitric oxide synthase in blood platelets by a glycoprotein Ib-dependent mechanism. J. Thromb. Haemost. 4, 2636–2644.

    Article  CAS  PubMed  Google Scholar 

  39. Kasirer-Friede A., Moran B., Nagrampa-Orje J., Swanson K., Ruggeri Z., Schraven B., Neel B., Koretzky G., Shattil S. 2007. ADAP is required for normal alphaIIbbeta3 activation by VWF/GP Ib-IX-V and other agonists. Blood. 109, 1018–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yin H., Liu J., Li Z., Berndt M., Lowell C., Du X. 2008. Src family tyrosine kinase Lyn mediates VWF/GPIb-IX-induced platelet activation via the cGMP signaling pathway. Blood. 112, 1139–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kasirer-Friede A., Cozzi M., Mazzucato M., De Marco L., Ruggeri Z., Shattil S. 2004. Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood. 103, 3403–3411.

    Article  CAS  PubMed  Google Scholar 

  42. Nesbitt W., Kulkarni S., Giuliano S., Goncalves I., Dopheide S., Yap C., Harper I., Salem H. H., Jackson S. 2002. Distinct glycoprotein Ib/V/IX and integrin alpha II beta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J. Biol. Chem. 277, 2965–2972.

    Article  CAS  PubMed  Google Scholar 

  43. Ozaki Y., Asazuma N., Suzuki-Inoue K., Berndt M. 2005. Platelet GPIb-IX-V-dependent signaling. J. Thromb. Haemost. 3, 1745–1751.

    Article  CAS  PubMed  Google Scholar 

  44. Nalayanda D., Kalukanimuttam M., Schmidtke D. 2007. Micropatterned surfaces for controlling cell adhesion and rolling under flow. Biomed. Microdevices. 9, 207–214.

    Article  PubMed  Google Scholar 

  45. Yuan Y., Kulkarni S., Ulsemer P., Cranmer S., Yap C., Nesbitt W., Harper I., Mistry N., Dopheide S., Hughan S., Williamson D., de la Salle C., Salem H., Lanza F., Jackson S. 1999. The von Willebrand factor-glycoprotein Ib/V/IX interaction induces actin polymerization and cytoskeletal reorganization in rolling platelets and glycoprotein Ib/V/IX-transfected cells. J. Biol. Chem. 274, 36241–36251.

    Article  CAS  PubMed  Google Scholar 

  46. Nieswandt B., Varga-Szabo D., Elvers M. 2009. Integrins in platelet activation. J. Thromb. Haemost. 206–209.

  47. Grüner S., Prostredna M., Schulte V., Krieg T., Eckes B., Brakebusch C., Nieswandt B. 2003. Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo. Blood. 102, 4021–4027.

    Article  CAS  PubMed  Google Scholar 

  48. Moser M., Nieswandt B., Ussar S., Pozgajova M., Fässler R. 2008. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–330.

    Article  CAS  PubMed  Google Scholar 

  49. Nieswandt B., Moser M., Pleines I., Varga-Szabo D., Monkley S., Critchley D., Fässler R. 2007. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J. Exp. Med. 204, 3113–3118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cifuni S., Wagner D., Bergmeier W. 2008. CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood. 112, 1696–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Manganaro D., Consonni A., Guidetti G., Canobbio I., Visconte C., Kim S., Okigaki M., Falasca M., Hirsch E., Kunapuli S., Torti M. 2015. Activation of phosphatidylinositol 3-kinase β by the platelet collagen receptors integrin α2β1 and GPVI: The role of Pyk2 and c-Cbl. Biochim. Biophys. Acta. 1853, 1879–1888.

    Article  CAS  PubMed  Google Scholar 

  52. Inoue O., Suzuki-Inoue K., Dean W., Frampton J., Watson S. 2003. Integrin alpha2beta1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCgamma2. J. Cell Biol. 160, 769–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen H., Kahn M. 2003. Reciprocal signaling by integrin and nonintegrin receptors during collagen activation of platelets. Mol. Cell. Biol. 23, 4764–4777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith C., Estavillo D., Emsley J., Bankston L., Liddington R., Cruz M. 2000. Mapping the collagen-binding site in the I domain of the glycoprotein Ia/IIa (Integrin 2 1). J. Biol. Chem. 275, 4205–4209.

    Article  CAS  PubMed  Google Scholar 

  55. Nieswandt B., Brakebusch C., Bergmeier W., Schulte V., Bouvard D., Mokhtari-Nejad R., Lindhout T., Heemskerk J., Zirngibl H., Fässler R. 2001. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen. EMBO J. 20, 2120–2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Clemetson J., Polgar J., Magnenat E., Wells T., Clemetson K. 1999. The platelet collagen receptor glycoprotein VI Is a member of the immunoglobulin superfamily closely related to Fc R and the natural killer receptors. J. Biol. Chem. 274, 29019–29024.

    Article  CAS  PubMed  Google Scholar 

  57. Tsuji M., Ezumi Y., Arai M., Takayama H. 1997. A novel association of Fc receptor γ-chain with glycoprotein VI and their co-expression as a collagen receptor in human platelets. J. Biol. Chem. 272, 23528–23531.

    Article  CAS  PubMed  Google Scholar 

  58. Bergmeier W., Stefanini L. 2013. Platelet ITAM signaling. Curr. Opin. Hematol. 20, 445–450.

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki-Inoue K., Tulasne D., Shen Y., Bori-Sanz T., Inoue O., Jung S., Moroi M., Andrews R., Berndt M., Watson S. 2002. Association of Fyn and Lyn with the proline-rich domain of glycoprotein VI regulates intracellular signaling. J. Biol. Chem. 277, 21561–21566.

    Article  CAS  PubMed  Google Scholar 

  60. Gibbins J., Okuma M., Farndale R., Barnes M., Watson S. 1997. Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor γ-chain. FEBS Lett. 413, 255–259.

    Article  CAS  PubMed  Google Scholar 

  61. Watson S., Herbert J., Pollitt A. 2010. GPVI and CLEC-2 in hemostasis and vascular integrity. J. Thromb. Haemost. 8, 1456–1467.

    Article  CAS  PubMed  Google Scholar 

  62. Schmaier A., Zou Z., Kazlauskas A., Emert-Sedlak L., Fong K., Neeves K., Maloney S., Diamond S. L., Kunapuli S., Ware J., Brass L., Smithgall T., Saksela K., Kahn M. 2009. Molecular priming of Lyn by GPVI enables an immune receptor to adopt a hemostatic role. Proc. Natl. Acad. Sci. USA. 106, 21167–21172.

    Article  PubMed  Google Scholar 

  63. Mangin P., Nonne C., Eckly A., Ohlmann P., Freund M., Nieswandt B., Cazenave J., Gachet C., Lanza F. 2003. A PLCγ2-independent platelet collagen aggregation requiring functional association of GPVI and integrin α2β1. FEBS Lett. 542, 53–59.

    Article  CAS  PubMed  Google Scholar 

  64. Andrews R., Suzuki-Inoue K., Shen Y., Tulasne D., Watson S., Berndt M. 2002. Interaction of calmodulin with the cytoplasmic domain of platelet glycoprotein VI. Blood. 99, 4219–4221.

    Article  CAS  PubMed  Google Scholar 

  65. Stephens G., Yan Y., Jandrot-Perrus M., Villeval J., Clemetson K., Phillips D. 2005. Platelet activation induces metalloproteinase-dependent GP VI cleavage to down-regulate platelet reactivity to collagen. Blood. 105, 186–191.

    Article  CAS  PubMed  Google Scholar 

  66. Chin D., Means A. 2000. Calmodulin: A prototypical calcium sensor. Trends Cell Biol. 10, 322–328.

    Article  CAS  PubMed  Google Scholar 

  67. Gilio K., van Kruchten R., Braun A., Berna-Erro A., Feijge M., Stegner D., van der Meijden P., Kuijpers M., Varga-Szabo D., Heemskerk J., Nieswandt B. 2010. Roles of platelet STIM1 and orai1 in glycoprotein VI- and thrombin-dependent procoagulant activity and thrombus formation. J. Biol. Chem. 285, 23629–23638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gilio K., Munnix I., Mangin P., Cosemans J., Feijge M., van der Meijden P., Olieslagers S., Chrzanowska-Wodnicka M., Lillian R., Schoenwaelder S., Koyasu S., Sage S., Jackson S., Heemskerk J. 2009. Non-redundant roles of phosphoinositide 3-kinase isoforms alpha and beta in glycoprotein VI-induced platelet signaling and thrombus formation. J. Biol. Chem. 284, 33750–33762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hussain J., Mahaut-Smith M. 1999. Reversible and irreversible intracellular Ca2+ spiking in single isolated human platelets. J. Physiol. 514, 713–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Heemskerk J., Vuist W., Feijge M., Reutelingsperger C., Lindhout T. 1997. Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent platelets: Evidence for regulation by protein tyrosine kinase-dependent Ca2+ responses. Blood. 90, 2615–2625.

    CAS  PubMed  Google Scholar 

  71. Bergmeier W., Oh-Hora M., McCarl C., Roden R., Bray P., Feske S. 2009. R93W mutation in Orai1 causes impaired calcium influx in platelets. Blood. 113, 675–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jung S., Moroi M., Soejima K., Nakagaki T., Miura Y., Berndt M., Gardiner E., Howes J., Pugh N., Bihan D., Watson S. 2012. Constitutive dimerization of glycoprotein VI (GPVI) in resting platelets is essential for binding to collagen and activation in flowing blood. J. Biol. Chem. 287, 30000–30013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jung S., Tsuji K., Moroi M. 2009. Glycoprotein (GP) VI dimer as a major collagen-binding site of native platelets: Direct evidence obtained with dimeric GPVI-specific Fabs. J. Thromb. Haemost. 7, 1347–1355.

    Article  CAS  PubMed  Google Scholar 

  74. Lecut C., Arocas V., Ulrichts H., Elbaz A., Villeval J., Lacapère J., Deckmyn H., Jandrot-Perrus M. 2004. Identification of residues within human glycoprotein VI involved in the binding to collagen: Evidence for the existence of distinct binding sites. J. Biol. Chem. 279, 52293–52299.

    Article  CAS  PubMed  Google Scholar 

  75. Gardiner E., Karunakaran D., Arthur J., Mu F., Powell M., Baker R., Hogarth P., Kahn M., Andrews R., Berndt M. 2008. Dual ITAM-mediated proteolytic pathways for irreversible inactivation of platelet receptors: De-ITAM-izing FcgammaRIIa. Blood. 111, 165–174.

    Article  CAS  PubMed  Google Scholar 

  76. Al-Tamimi M., Grigoriadis G., Tran H., Paul E., Servadei P., Berndt M., Gardiner E., Andrews R. 2011. Coagulation-induced shedding of platelet glycoprotein VI mediated by factor Xa. Blood. 117, 3912–3920.

    Article  CAS  PubMed  Google Scholar 

  77. Al-Tamimi M., Tan C., Qiao J., Pennings G., Javadzadegan A., Yong A., Arthur J., Davis A., Jing J., Mu F.-T., Hamilton J. 2012. Pathologic shear triggers shedding of vascular receptors: A novel mechanism for down-regulation of platelet glycoprotein VI in stenosed coronary vessels. Blood. 119, 4311–4320.

    Article  CAS  PubMed  Google Scholar 

  78. Al-Tamimi M., Arthur J. 2012. Focusing on plasma glycoprotein VI. J. Thromb. Haemost. 108, 648–655.

    Google Scholar 

  79. Rabie T., Varga-Szabo D., Bender M., Pozgaj R., Lanza F., Saito T., Watson S., Nieswandt B. 2007. Diverging signaling events control the pathway of GPVI down-regulation in vivo. Blood. 110, 529–535.

    Article  CAS  PubMed  Google Scholar 

  80. Gardiner E., Karunakaran D., Shen Y., Arthur J., Andrews R., Berndt M., 2007. Controlled shedding of platelet glycoprotein (GP)VI and GPIb-IX-V by ADAM family metalloproteinases. J. Thromb. Haemost. 5, 1530–1537.

    Article  CAS  PubMed  Google Scholar 

  81. Arthur J., Qiao J., Shen Y., Davis A., Dunne E., Berndt M., Gardiner E., Andrews R. 2012. ITAM receptor-mediated generation of reactive oxygen species in human platelets occurs via Syk-dependent and Syk-independent pathways. J. Thromb. Haemost. 10, 1133–1141.

    Article  CAS  PubMed  Google Scholar 

  82. Walsh T., Berndt M., Carrim N., Cowman J., Kenny D., Metharom P. 2014. The role of Nox1 and Nox2 in GPVI-dependent platelet activation and thrombus formation. Redox Biol. 2, 178–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Arthur J., Gardiner E., Kenny D., Andrews R., Berndt M. 2009. Platelet receptor redox regulation. Platelets. 19, 1–8.

    Article  CAS  Google Scholar 

  84. Freedman J. 2008. Oxidative stress and platelets. Arterioscler. Thromb. Vasc. Biol. 28, 11–16.

    Article  CAS  Google Scholar 

  85. Arthur J., Shen Y., Gardiner E., Coleman L., Murphy D., Kenny D., Andrews R., Berndt M. 2011. TNF receptor-associated factor 4 (TRAF4) is a novel binding partner of glycoprotein Ib and glycoprotein VI in human platelets. J. Thromb. Haemost. 9, 163–172.

    Article  CAS  PubMed  Google Scholar 

  86. Berndt M., Shen Y. 2001. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb. and Haemost. 86, 178–188.

    Article  CAS  Google Scholar 

  87. Bigalke B., Stellos K., Geisler T., Kremmer E., Seizer P., May A., Lindemann S., Gawaz M. 2011. Glycoprotein VI for diagnosis of acute coronary syndrome when ECG is ambiguous. Int. J. Cardiol. 149, 164–168.

    Article  PubMed  Google Scholar 

  88. Dütting S., Bender M., Nieswandt B. 2012. Platelet GPVI: A target for antithrombotic therapy?! Trends Pharmacol. Sci. 33, 583–590.

    Article  CAS  PubMed  Google Scholar 

  89. Yakimenko A., Verholomova F., Kotova Y., Ataullakhanov F., Panteleev M. 2012. Identification of different proaggregatory abilities of activated platelet subpopulations. Biophys. J. 102, 2261–2269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Abaeva A., Canault M., Kotova Y., Obydennyy S., Yakimenko A., Podoplelova N., Kolyadko V., Chambost H., Mazurov A., Ataullakhanov F., Nurden A. 2013. Procoagulant platelets form an alpha-granule protein-covered “cap” on their surface that promotes their attachment to aggregates. J. Biol. Chem. 288, 29621–29632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Artemenko E., Yakimenko A., Pichugin A., Ataullakhanov F., Panteleev M. 2016. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidyl-serine-positive platelets. Biochem. J. 473, 435–448.

    Article  CAS  PubMed  Google Scholar 

  92. Agbani E., van den Bosch M., Brown E., Williams C., Mattheij N., Cosemans J., Collins P., Heemskerk J., Hers I., Poole A. 2015. Coordinated membrane ballooning and procoagulant spreading in human platelets. Circulation. 132, 1414–1424.

    Article  CAS  PubMed  Google Scholar 

  93. Choo H., Saafir T., Mkumba L., Wagner M., Jobe S. 2012. Mitochondrial calcium and reactive oxygen species regulate agonist-initiated platelet phosphatidyl-serine exposure. Arterioscler. Thromb. Vasc. Biol. 32, 2946–2955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jobe S., Wilson K., Leo L., Raimondi A., Molkentin J., Lentz S., Di Paola J. 2008. Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood. 111, 1257–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stalker T., Traxler E., Wu J., Wannemacher K., Cermignano S., Voronov R., Diamond S., Brass L. 2013. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood. 121, 1875–1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Doggett T., Girdhar G., Lawshe A., Miller J., Laurenzi I., Diamond S., Diacovo T. 2003. Alterations in the intrinsic properties of the GPIb-VWF tether bond define the kinetics of the platelet-type von Willebrand disease mutation, Gly233Val. Blood. 102, 152–160.

    Article  CAS  PubMed  Google Scholar 

  97. Kumar R., Dong J., Thaggard J., Cruz M., López J., McIntire L. 2003. Kinetics of GPIbalpha-vWF-A1 tether bond under flow: Effect of GPIbalpha mutations on the association and dissociation rates. Biophys. J. 85, 4099–4109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project nos. 16-04-01163 and 16-31-60061-mol_a_dk), by the grants of the President of Russian Federation (project nos. MK-2706.2017.4 and MD-229.2017.4), and by the scholarship grant of the President of Russian Federation (project no. SP-2427.2015.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Nechipurenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sveshnikova, A.N., Belyaev, A.V., Panteleev, M.A. et al. The Role of Transmembrane Glycoproteins, Integrins and Serpentines in Platelet Adhesion and Activation. Biochem. Moscow Suppl. Ser. A 12, 315–326 (2018). https://doi.org/10.1134/S1990747818050070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818050070

Keywords:

Navigation