Skip to main content
Log in

Study of the Mechanism of the Neuron Sensitization to the Repeated Glutamate Challenge

  • ARTICLES
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Exposure of cultured neurons to high concentrations of Glu leads to a strong depolarization of mitochondria, which develops synchronously with the secondary rise in the intracellular Ca2+ concentration (delayed calcium deregulation, DCD). In this study, using the primary culture of rat cerebellar neurons, we investigated the mechanism of neuronal sensitization, which manifests itself in the reduction of latent periods of DCD during repeated exposures to Glu. It was shown that the most likely cause of sensitization is the inability of mitochondria to maintain a high transmembrane potential (ΔΨm) as a result of an increase in the proton conductivity of the internal mitochondrial membrane, but not the opening of the mitochondrial permeability transition pore in the inner mitochondrial membrane. Mitochondrial dysfunction reduces the production of ATP, leading to the inability of neurons to quickly restore the concentration of Na+, ATP, and NADH in the intervals between successive Glu administrations. One of the reasons that aggravate the dysfunction of mitochondria and contribute to the sensitization of neurons to the repeated action of Glu is Ca2+ accumulated in the mitochondria during the first glutamate impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Wang Y., Qin Z. 2010. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 15 (11), 1382–1402.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou Y., Danbolt N.C. 2014. Glutamate as a neurotransmitter in the healthy brain. J. Neural. Transm. 121 (8), 799–817.

    Article  CAS  PubMed  Google Scholar 

  3. Gudiño-Cabrera G., Ureña-Guerrero M.E., Rivera-Cervantes M.C., Feria-Velasco A.I., Beas-Zárate C. 2014. Excitotoxicity triggered by neonatal monosodium glutamate treatment and blood–brain barrier function. Arch. Med. Res. 45 (8), 653–659.

    Article  CAS  PubMed  Google Scholar 

  4. Plitman E., Nakajima S., de la Fuente-Sandoval C., Gerretsen P., Chakravarty M.M., Kobylianskii J., Chung J.K., Caravaggio F., Iwata Y., Remington G., Graff-Guerrero A. 2014. Glutamate-mediated excitotoxicity in schizophrenia: A review. Eur. Neuropsychopharmacol. 24 (10), 1591–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kostic M., Zivkovic N., Stojanovic I. 2013. Multiple sclerosis and glutamate excitotoxicity. Rev. Neurosci. 24 (1), 71–88.

    Article  CAS  PubMed  Google Scholar 

  6. Verkhratsky A., Kirchhoff F. 2007. NMDA receptors in glia. Neurosci. 13 (1), 28–37.

    CAS  Google Scholar 

  7. Gerkau N.J., Rakers C., Petzold G.C., Rose C.R. 2017. Differential effects of energy deprivation on intracellular sodium homeostasis in neurons and astrocytes. J. Neurosci. Res. 95 (11), 2275–2285.

    Article  CAS  PubMed  Google Scholar 

  8. Olney J.W., Gubareff T. 1978. Glutamate neurotoxicity and Huntington’s chorea. Nature. 271 (5645), 557–559.

    Article  CAS  PubMed  Google Scholar 

  9. Choi D.W. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1 (8), 623–634.

    Article  CAS  PubMed  Google Scholar 

  10. Nicholls D.G., Budd S.L. 2000. Mitochondria and neuronal survival. Physiol. Rev. 80 (1), 315–360.

    Article  CAS  PubMed  Google Scholar 

  11. Khodorov B. 2004. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog. Biophys. Mol. Biol. 86 (2), 279–351.

    Article  CAS  PubMed  Google Scholar 

  12. Duchen M.R. 2012. Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflügers Arch. Eur. J. Physiol. 464 (1), 111–121.

    Article  CAS  Google Scholar 

  13. Kornberg H. 2000. Krebs and his trinity of cycles. Nat. Rev. Mol. Cell Biol. 1 (3), 225–228.

    Article  CAS  PubMed  Google Scholar 

  14. Skulachev V.P., Bogachev A.V., Kasparinskii F.O. 2010. Membrannaya bioenergetika (Membrane bioenergetics). M., MSU.

    Google Scholar 

  15. Nicholls D.G., Ferguson S.J. 2013. Bioenergetics. London: Elsevier, Acad. Press. 4 ed.

  16. Tymianski M., Charlton M.P., Carlen P.L., Tator C.H. 1993. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci. 13 (5), 2085–2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nicholls D.G., Ward M.W. 2000. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: Mortality and millivolts. Trends Neurosci. 23 (4), 166–174.

    Article  CAS  PubMed  Google Scholar 

  18. Abramov A.Y., Duchen M.R. 2010. Impaired mitochondrial bioenergetics determines glutamate-induced delayed calcium deregulation in neurons. Biochim. Biophys. Acta. Gen. Subj. 1800 (3), 297–304.

  19. Ames A. 2000. CNS energy metabolism as related to function. Brain Res. Rev. 34 (1–2), 42–68.

    Article  CAS  PubMed  Google Scholar 

  20. Kiedrowski L., Brooker G., Costa E., Wroblewski J.T. 1994. Glutamate impairs neuronal calcium extrusion while reducing sodium gradient. Neuron. 12 (2), 295–300.

    Article  CAS  PubMed  Google Scholar 

  21. Kato H., Araki T., Kogure K. 1992. Repeated focal cerebral ischemia in gerbils is associated with development of infarction. Brain Res. 596 (1–2), 315–319.

    Article  CAS  PubMed  Google Scholar 

  22. Dambinova S.A., Shikuev A.V., Weissman J.D., Mullins J.D. 2013. AMPAR peptide values in blood of nonathletes and club sport athletes with concussions. Mil. Med. 178 (3), 285–290.

    Article  PubMed  Google Scholar 

  23. Nakata N., Kato H., Kogure K. 1993. Effects of repeated cerebral ischemia on extracellular amino acid concentrations measured with intracerebral microdialysis in the gerbil hippocampus. Stroke. 24 (3), 458–464.

    Article  CAS  PubMed  Google Scholar 

  24. Ueda Y., Obrenovitch T.P., Lok S.Y., Sarna G.S., Symon L. 1992. Changes in extracellular glutamate concentration produced in the rat striatum by repeated ischemia. Stroke. 23 (8), 1125–1130.

    Article  CAS  PubMed  Google Scholar 

  25. Khodorov B.I., Mikhailova M.M., Bolshakov A.P., Surin A.M., Sorokina E.G., Rozhnev S.A., Pinelis V.G. 2012. Dramatic effect of glycolysis inhibition on the cerebellar granule cells bioenergetics. Biochem. (Moscow) Suppl. Ser. A Membr. Cell Biol. 6 (2), 186–197.

    Google Scholar 

  26. Surin A.M., Gorbacheva L.R., Savinkova I.G., Sharipov R.R., Khodorov B.I., Pinelis V.G. 2014. Study on ATP concentration changes in cytosol of individual cultured neurons during glutamate-induced deregulation of calcium homeostasis. Biochemistry (Moscow). 79 (2), 146–157.

    Article  CAS  Google Scholar 

  27. Imamura H., Huynh Nhat K.P., Togawa H., Saito K., Iino R., Kato-Yamada Y., Nagai T., Noji H. 2009. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc. Natl. Acad. Sci. USA. 106 (37), 15651–15656.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y.J.-Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., Liceiri K., Tomancak P., A. C. 2012. Fiji: An open source platform for biological image analysis. Nat. Methods. 9 (7), 676–682.

    Article  CAS  PubMed  Google Scholar 

  29. Keelan J., Vergun O., Duchen M.R. 1999. Excitotoxic mitochondrial depolarisation requires both calcium and nitric oxide in rat hippocampal neurons. J. Physiol. 520 (3), 797–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vergun O., Keelan J., Khodorov B.I., Duchen M.R. 1999. Glutamate-induced mitochondrial depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurones. J. Physiol. 519 (2), 451–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rueda C.B., Llorente-Folch I., Traba J., Amigo I., Gonzalez-Sanchez P., Contreras L., Juaristi I., Martinez-Valero P., Pardo B., Del Arco A., Satrustegui J. 2016. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs). Biochim. Biophys. Acta. 1857 (8), 1158–1166.

  32. Nicholls D.G. 2008. Oxidative stress and energy crises in neuronal dysfunction. Ann. N.Y. Acad. Sci. 1147 (1), 53–60.

    Article  CAS  PubMed  Google Scholar 

  33. Bernardi P. 1999. Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol. Rev. 79 (4), 1127–1155.

    Article  CAS  PubMed  Google Scholar 

  34. Wabnitz A.V., Storozhevykh T.P., Pinelis V.G., Khodorov B.I. 2005. The permeability transition pore is not a prerequisite for glutamate-induced calcium deregulation and mitochondrial depolarization in brain neurons. Biol. Membr. (Rus.). 22 (4), 378–382.

    Google Scholar 

  35. Bolshakov A.P., Mikhailova M.M., Szabadkai G., Pinelis V.G., Brustovetsky N., Rizzuto R., Khodorov B.I. 2008. Measurements of mitochondrial pH in cultured cortical neurons clarify contribution of mitochondrial pore to the mechanism of glutamate-induced delayed Ca2+ deregulation. Cell Calcium. 43 (6), 602–614.

    Article  CAS  PubMed  Google Scholar 

  36. Lazarewicz J.W., Wroblewski J.T., Costa E. 1990. N‑methyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J. Neurochem. 55 (6), 1875–1881.

    Article  CAS  PubMed  Google Scholar 

  37. Surin A.M., Bolshakov A.P., Mikhailova M.M., Sorokina E.G., Senilova Ya.E., Pinelis V.G., Khodorov B.I. 2006. Arachidonic acid enhances intracellular [Ca2+]i increase and mitochondrial depolarization induced by glutamate in cerebellar granule cells. Biochemistry (Moscow). 71 (8), 864–870.

    Article  CAS  Google Scholar 

  38. Mironova G.D., Saris N.-E.L., Belosludtseva N.V., Agafonov A.V., Elantsev A.B., Belosludtsev K.N. 2015. Involvement of palmitate/Ca2+(Sr2+)-induced pore in the cycling of ions across the mitochondrial membrane. Biochim. Biophys. Acta. Biomembr. 1848 (2), 488–495.

  39. Belosludtsev K.N., Belosludtseva N. V., Agafonov A. V., Astashev M.E., Kazakov A.S., Saris N.-E.L., Miro-nova G.D. 2014. Ca2+-dependent permeabilization of mitochondria and liposomes by palmitic and oleic acids: A comparative study. Biochim. Biophys. Acta. Biomembr. 1838 (10), 2600–2606.

  40. Abramov A.Y., Duchen M.R. 2008. Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochim. Biophys. Acta. 1777 (7–8), 953–964.

  41. Surin A.M., Zobova S.N., Tukhbatova G.R., Senilova Ya.E., Pinelis V.G., Khodorov B.I. 2010. Changes in mitochondrial NAD(P)H and glutamate-induced delayed calcium deregulation in cultured rat cerebellar neurons. Biochem. (Moscow) Suppl. Series A: Membr. Cell Biol. 4 (1), 32–37.

    Google Scholar 

  42. Surin A.M., Krasilnikova I.A., Pinelis V.G., Khodorov B.I. 2014. Study of the relationships between glutamate-induced delayed calcium deregulation, mitochondrial depolarization, and subsequent neuronal death. Patogenez (Rus.). 12 (4), 40–46.

    Google Scholar 

  43. Yoshida T., Alfaqaan S., Sasaoka N., Imamura H. 2017. Application of FRET-based biosensor “ATeam” for visualization of ATP levels in the mitochondrial matrix of living mammalian cells. Methods Mol. Biol. 1567, 231–243.

    Article  CAS  PubMed  Google Scholar 

  44. Liemburg-Apers D.C., Imamura H., Forkink M., Nooteboom M., Swarts H.G., Brock R., Smeitink J.A.M., Willems P.H.G.M., Koopman W.J.H. 2011. Quantitative glucose and ATP sensing in mammalian cells. Pharm. Res. 28 (11), 2745–2757.

    Article  CAS  PubMed  Google Scholar 

  45. Brittain M.K., Brustovetsky T., Sheets P.L., Brittain J.M., Khanna R., Cummins T.R., Brustovetsky N. 2012. Delayed calcium dysregulation in neurons requires both the NMDA receptor and the reverse Na+/Ca2+ exchanger. Neurobiol. Dis. 46 (1), 109–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kiedrowski L. 1999. N-methyl-D-aspartate excitotoxicity: Relationships among plasma membrane potential, Na+/Ca2+ exchange, mitochondrial Ca2+ overload, and cytoplasmic concentrations of Ca2+, H+, and K+. Mol. Pharmacol. 56 (3), 619–632.

    Article  CAS  PubMed  Google Scholar 

  47. Kiedrowski L. 2007. NCX and NCKX operation in ischemic neurons. Ann. N.Y. Acad. Sci. 1099 (1), 383–395.

    Article  CAS  PubMed  Google Scholar 

  48. Pinelis V.G., Segal M., Greenberger V., Khodorov B.I. 1994. Changes in cytosolic sodium caused by a toxic glutamate treatment of cultured hippocampal neurons. Biochem. Mol. Biol. Int. 32 (3), 475–482.

    CAS  PubMed  Google Scholar 

  49. Nicholls D.G., Vesce S., Kirk L., Chalmers S. 2003. Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells. Cell Calcium. 34 (0143–4160 (Print)), 407–424.

  50. Brocard J.B., Tassetto M., Reynolds I.J. 2001. Quantitative evaluation of mitochondrial calcium content in rat cortical neurones following a glutamate stimulus. J. Physiol. 531 (Pt 3), 793–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chernyak B.V. 1999. Induction of the non-selective mitochondrial pore in lymphoid cells. 2. Intact rat thymocytes. Biochemistry (Moscow). 64 (8), 922–928.

    CAS  Google Scholar 

  52. Xu-Friedman M.A., Regehr W.G. 1999. Presynaptic strontium dynamics and synaptic transmission. Biophys. J. 76 (4), 2029–2042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Severin F.F., Severina I.I., Antonenko Y.N., Rokitskaya T.I., Cherepanov D.A., Mokhova E.N., Vyssokikh M.Y., Pustovidko A.V., Markova O.V., Yaguzhinsky L.S., Korshunova G.A., Sumbatyan N.V., Skulachev M.V., Skulachev V.P. 2010. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proc. Natl. Acad. Sci. USA. 107 (2), 663–668.

    Article  PubMed  Google Scholar 

  54. Surin A.M., Sharipov R.R., Krasilnikova I.A., Boyarkin D.P., Lisina O.Yu., Gorbacheva L.R., Avetisian A.V., Pinelis V.G. 2017. Disruption of functional activity of mitochondria during the MTT assay of viability of cultured neurons. Biochamistry (Moscow). 82 (6), 737–749.

    Article  CAS  Google Scholar 

  55. Jekabsons M.B., Nicholls D.G. 2004. In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate. J. Biol. Chem. 279 (31), 32989–33000.

    Article  CAS  PubMed  Google Scholar 

  56. Jekabsons M.B., Nicholls D.G. 2006. Bioenergetic analysis of cerebellar granule neurons undergoing apoptosis by potassium/serum deprivation. Cell Death Differ. 13 (9), 1595–1610.

    Article  CAS  PubMed  Google Scholar 

  57. Liu D., Gharavi R., Pitta M., Gleichmann M., Mattson M.P. 2009. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromolec. Med. 11 (1), 28–42.

    Article  CAS  Google Scholar 

  58. Pinelis V.G., Bykova L.P., Bogachev A.P., Isaev N.K., Viktorov I. V, Khodorov B.I. 1997. Toxic effect of glutamate on cultured cerebellar granular cells reduces the intracellular level of ATP. The role of Ca2+ ions. Bull. Eksp. Biol. Med. (Rus.). 123 (2), 162–164.

    CAS  Google Scholar 

  59. Kovacs-Bogdan E., Sancak Y., Kamer K.J., Plovanich M., Jambhekar A., Huber R.J., Myre M.A., Blower M.D., Mootha V.K. 2014. Reconstitution of the mitochondrial calcium uniporter in yeast. Proc. Natl. Acad. Sci. USA. 111 (24), 8985–8990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McIntosh D.B., Woolley D.G., Vilsen B., Andersen J.P. 1996. Mutagenesis of segment 487Phe-Ser-Arg-Asp-Arg-Lys492 of sarcoplasmic reticulum Ca2+-ATPase produces pumps defective in ATP binding. J. Biol. Chem. 271 (42), 25778–25789.

    Article  CAS  PubMed  Google Scholar 

  61. Saris N.-E.L., Carafoli E. 2005. A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Moscow). 70 (2), 187–194.

    Article  CAS  Google Scholar 

  62. Vyklicky V., Korinek M., Smejkalova T., Balik A., Krausova B., Kaniakova M., Lichnerova K., Cerny J., Krusek J., Dittert I., Horak M., Vyklicky L. 2014. Structure, function, and pharmacology of NMDA receptor channels. Physiol. Res. 63 (Suppl. 1), 191–203.

    Google Scholar 

  63. Novelli A., Reilly J.A., Lysko P.G., Henneberry R.C. 1988. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451 (1–2), 205–212.

    Article  CAS  PubMed  Google Scholar 

  64. Rose C.R., Konnerth A. 2001. NMDA receptor-mediated Na+ signals in spines and dendrites. J. Neurosci. 21 (12), 4207–4214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cortassa S., Aon M.A., Marbán E., Winslow R.L., O’Rourke B. 2003. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys. J. 84 (4), 2734–2755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cortassa S., Aon M.A. 2012. Computational modeling of mitochondrial function. Methods Mol. Biol. 810, 311–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. H. Imamura who kindly provided plasmid Ateam1.03 encoding ATP sensor. The work was supported by the Russian Foundation for Basic Research (project nos. 16-04-00792 and 16-04-01869) and by the Russian Science Foundation (project no. 17-15-01487).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Surin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. Experiments involving animals were carried out in accordance with ethical principles and normative documents recommended by the European Convention on the protection of vertebrate animals used in experiments (Guide for the Care and Use of Laboratory Animals: Eighth Edition, 2010), as well as in compliance with the Regulations of the appropriate laboratory practice as approved by the order no. 199n of 01.04.2016 of the Russian Federation Ministry of Health.

Additional information

Translated by A. Dunina-Barkovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharipov, R.R., Krasilnikova, I.A., Pinelis, V.G. et al. Study of the Mechanism of the Neuron Sensitization to the Repeated Glutamate Challenge. Biochem. Moscow Suppl. Ser. A 12, 369–381 (2018). https://doi.org/10.1134/S1990747818050057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818050057

Keywords:

Navigation