Skip to main content
Log in

Extracellular Vesicles and Prospects of Their Use for Tissue Regeneration

  • REVIEWS
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Extracellular vesicles are an important component of different cell secretomes that provide complex delivery of biologically active molecules and horizontal transfer of genetic information. They differ in their origin, composition, and functions. Selection of the vesicle isolation protocol, change in the cultivation conditions of the cells producing them and genetic modification influence the composition of the vesicles obtained. Stem cells produce vesicles carrying a wide range of growth factors, chemokines, cytokines, miRNAs that can affect the surrounding cells and have a therapeutic effect in various pathologies. The nature of biogenesis of extracellular vesicles, as well as their effects on target cells, is an important issue of fundamental biology, and improvement of methods for obtaining vesicles of the required composition opens broad prospects for their use in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Tibbetts M.D., Samuel M.A., Chang T.S., Ho A.C. 2012. Stem cell therapy for retinal disease. Curr. Opin. Ophthalmol. 23 (3), 226–234.

    Article  PubMed  Google Scholar 

  2. Martínez-Morales P.L., Revilla A., Ocana I., González C., Sainz P., McGuire D., Liste I. 2013. Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev. 9 (5), 685–699.

    Article  CAS  Google Scholar 

  3. Sanganalmath S.K., Bolli R. 2013. Cell therapy for heart failure: A comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ. Res. 113 (6), 810–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Angelos M.G., Kaufman D.S. 2015. Pluripotent stem cell applications for regenerative medicine. Curr. Opin. Organ Transplant. 20 (6), 663–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tolar J., Nauta A.J., Osborn M.J., Panoskaltsis Mortari A., McElmurry R.T., Bell S., Xia L., Zhou N., Riddle M., Schroeder T.M., Westendorf J.J., McIvor R.S., Hogendoorn P.C., Szuhai K., Oseth L., Hirsch B., Yant S.R., Kay M.A., Peister A., Prockop D.J., Fibbe W.E., Blazar B.R. 2007. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 25 (2), 371–379.

    Article  CAS  PubMed  Google Scholar 

  6. Tang D.Q., Wang Q., Burkhardt B.R., Litherland S.A., Atkinson M.A., Yang L.J. 2012. In vitro generation of functional insulin-producing cells from human bone marrow-derived stem cells, but long-term culture running risk of malignant transformation. Am. J. Stem Cells. 1 (2), 114–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. de Almeida P.E., Ransohoff J.D., Nahid A., Wu J.C. 2013. Immunogenicity of pluripotent stem cells and their derivatives. Circ. Res. 112 (3), 549–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu K., Wu Q., Ni C., Zhang P., Zhong Z., Wu Y., Wang Y., Xu Y., Kong M., Cheng H., Tao Z., Yang Q., Liang H., Jiang Y., Li Q., Zhao J., Huang J., Zhang F., Chen Q., Li Y., Chen J., Zhu W., Yu H., Zhang J., Yang H.T., Hu X., Wang J. 2018. Lack of remuscularization following transplantation of human embryonic stem cell-derived cardiovascular progenitor cells in infarcted nonhuman primates. Circ. Res. 122 (7), 958–969.

    Article  CAS  PubMed  Google Scholar 

  9. Tran C., Damaser M.S. 2015. Stem cells as drug delivery methods: Application of stem cell secretome for regeneration. Adv. Drug Deliv. Rev. 82–83, 1–11.

    Article  CAS  PubMed  Google Scholar 

  10. van der Pol E., Boing A.N., Harrison P., Sturk A., Nieuwland R. 2012. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64 (3), 676–705.

    Article  CAS  PubMed  Google Scholar 

  11. Johnstone R.M., Adam M., Hammond J.R., Orr L., Turbide C. 1987. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262 (19), 9412–9420.

    CAS  PubMed  Google Scholar 

  12. Théry C., Ostrowski M., Segura E. 2009. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9 (8), 581–593.

    Article  CAS  PubMed  Google Scholar 

  13. Gould S.J., Raposo G. 2013. As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles. 2. doi https://doi.org/10.3402/jev.v2i0.20389

  14. Yáñez-Mó M., Siljander P.R., Andreu Z., Zavec A.B., Borràs F.E., Buzas E.I., Buzas K., Casal E., Cappello F., Carvalho J., Colás E., Cordeiro-da Silva A., Fais S., Falcon-Perez J.M., Ghobrial I.M., Giebel B., Gimona M., Graner M., Gursel I., Gursel M., Heegaard N.H., Hendrix A., Kierulf P., Kokubun K., Kosanovic M., Kralj-Iglic V., Krämer-Albers E.M., Laitinen S., Lässer C., Lener T., Ligeti E., Linē A., Lipps G., Llorente A., Lötvall J., Manček-Keber M., Marcilla A., Mittelbrunn M., Nazarenko I., Nolte-’t Hoen E.N., Nyman T.A., O’Driscoll L., Olivan M., Oliveira C., Pállinger É., Del Portillo H.A., Reventós J., Rigau M., Rohde E., Sammar M., Sánchez-Madrid F., Santarém N., Schallmoser K., Ostenfeld M.S., Stoorvogel W., Stukelj R., Van der Grein S.G., Vasconcelos M.H., Wauben M.H., De Wever O. 2015. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 4. doi https://doi.org/10.3402/jev.v4.27066

  15. van Niel G., D’Angelo G., Raposo G. 2018. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19 (4), 213–228.

    Article  CAS  PubMed  Google Scholar 

  16. Harding C., Heuser J., Stahl P. 1983. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97 (2), 329–339.

    Article  CAS  PubMed  Google Scholar 

  17. Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. 2013. Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neurooncol. 113 (1), 1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Muralidharan-Chari V., Clancy J., Plou C., Romao M., Chavrier P., Raposo G., D’Souza-Schorey C. 2009. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19 (22), 1875–1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tchevkina E.M., Shcherbakov A.M., Zhuravskaya A.Yu., Semina S.E., Komel’kov A.V., Krasil‘nikov M.A. 2015. Exosomes and transfer of (epi)genetic information by tumor cells. Uspekhi Molek. Onkol. (Rus.). 2 (3), 8–20.

    Google Scholar 

  20. Tamkovich, S. N., Tutanov O. S., Laktionov P. P. 2016. Exosomes: Generation, structure, transport, biological activity, and diagnostic application. Biochem. (Moscow) Suppl. Series A: Membr. Cell Biol. 10 (3), 163–173.

    Google Scholar 

  21. Frydrychowicz M., Kolecka-Bednarczyk A., Madejczyk M., Yasar S., Dworacki G. 2015. Exosomes – structure, biogenesis and biological role in non-small-cell lung cancer. Scand. J. Immunol. 81 (1), 2–10.

    Article  CAS  PubMed  Google Scholar 

  22. Colombo M., Moita C., van Niel G., Kowal J., Vigneron J., Benaroch P., Manel N., Moita L.F., Théry C., Raposo G. 2013. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell. Sci. 126 (Pt 24), 5553–5565.

    Article  CAS  PubMed  Google Scholar 

  23. Colombo M., Raposo G., Thery C. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289.

    Article  CAS  PubMed  Google Scholar 

  24. Carayon K., Chaoui K., Ronzier E. 2011. Proteolipidic composition of exosomes changes during reticulocyte maturation. J. Biol. Chem. 286 (39), 34426–3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kalra H., Drummen G.P., Mathivanan S. 2016. Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci. 17 (2), 170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Subra C., Laulagnier K., Perret B., Record M. 2007. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie. 89 (2), 205–212.

    Article  CAS  PubMed  Google Scholar 

  27. Iraci N., Leonardi T., Gessler F., Vega B., Pluchino S. 2016. Focus on extracellular vesicles: Physiological role and signalling properties of extracellular membrane vesicles. Int. J. Mol. Sci. 17 (2), 171. doi https://doi.org/10.3390/ijms17020171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luga V., Zhang L., Viloria-Petit A.M., Ogunjimi A.A., Inanlou M.R., Chiu E., Buchanan M., Hosein A.N., Basik M., Wrana J.L. 2012. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 151 (7), 1542–1556.

    Article  CAS  PubMed  Google Scholar 

  29. Andreu Z., Yanez-Mo M. 2014. Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 5, 442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simpson R.J., Jensen S.S., Lim J.W. 2008. Proteomic profiling of exosomes: Current perspectives. Proteomics. 8 (19), 4083–4099.

    Article  CAS  PubMed  Google Scholar 

  31. Tauro B.J., Greening D.W., Mathias R.A. 2013. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol. Cell Proteomics. 12 (3), 587–598.

    Article  CAS  PubMed  Google Scholar 

  32. Keerthikumar S., Gangoda L., Liem M., Fonseka P., Atukorala I., Ozcitti C., Mechler A., Adda C.G., Ang C.S., Mathivanan S. 2015. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget. 6 (17), 15 375–15 396.

    Article  Google Scholar 

  33. Ahadi A., Khoury S., Losseva M. 2016. A comparative analysis of lncRNAs in prostate cancer exosomes and their parental cell line. Genom Data. 9, 7–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kuwabara Y., Ono K., Horie T., Nishi H., Nagao K., Kinoshita M., Watanabe S., Baba O., Kojima Y., Shizuta S., Imai M., Tamura T., Kita T., Kimura T. 2011. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ. Cardiovasc. Genet. 4 (4), 446–454.

    Article  CAS  Google Scholar 

  35. Gheytanchi E., Madjd Z., Janani L., Rasti A., Ghods R., Atyabi F., Asadi-Lari M.H., Babashah S. 2017. Exosomal microRNAs as potential circulating biomarkers in gastrointestinal tract cancers: a systematic review protocol. Syst. Rev. 6 (1), 228.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goto T., Fujiya M., Konishi H., Sasajima J., Fujibayashi S., Hayashi A., Utsumi T., Sato H., Iwama T., Ijiri M., Sakatani A., Tanaka K., Nomura Y., Ueno N., Kashima S., Moriichi K., Mizukami Y., Kohgo Y., Okumura T. 2018. An elevated expression of serum exosomal microRNA-191, -21, -451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer. 18 (1), 116. doi https://doi.org/10.1186/s12885-018-4006-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lunavat T.R., Cheng L., Kim D.K. 2015. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells–Evidence of unique microRNA cargos. RNA Biol. 12 (8), 810–823.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Théry C., Amigorena S., Raposo G. 2006. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3.22.

  39. Momen-Heravi F., Balaj L., Alian S., Mantel P.Y., Halleck A.E., Trachtenberg A.J., Soria C.E., Oquin S., Bonebreak C.M., Saracoglu E., Skog J., Kuo W.P. 2013. Current methods for the isolation of extracellular vesicles. Biol. Chem. 394 (10), 1253–1262.

    Article  CAS  PubMed  Google Scholar 

  40. Greening D.W., Xu R., Ji H., Tauro B.J., Simpson R.J. 2015. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol. Biol. 1295, 179–209.

    Article  CAS  PubMed  Google Scholar 

  41. Korgel B.A., van Zanten J.H., Monbouquette H.G. 1998. Vesicle size distributions measured by flow field-flow fractionation coupled with multiangle light scattering. Biophys. J. 74 (6), 3264–3272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rekker K., Saare M., Roost A.M. 2014. Comparison of serum exosome isolation methods for microRNA profiling. Clin. Biochem. 47 (1–2), 135–138.

    Article  CAS  PubMed  Google Scholar 

  43. Gudbergsson J.M., Johnsen K.B., Skov M.N. 2016. Systematic review of factors influencing extracellular vesicle yield from cell cultures. Cytotechnology. 68 (4), 579–592.

    Article  PubMed  Google Scholar 

  44. Muntión S., Ramos T.L., Diez-Campelo M., Rosón B., Sánchez-Abarca L.I., Misiewicz-Krzeminska I., Preciado S., Sarasquete M.E., de Las Rivas J., González M., Sánchez-Guijo F., Del Cañizo M.C. 2016. Microvesicles from mesenchymal stromal cells are involved in HPC-microenvironment crosstalk in myelodysplastic patients. PLoS One. 11 (2), e0146722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shtam T.A., Burdakov V.S., Landa S.B., Naryzhny S.N., Bairamukov V.Y., Malek A.V., Orlov Y.N., Filatov M.V. 2017. Aggregation by lectins as an approach for exosome isolation from biological fluids: Validation for proteomic studies. Cell and Tissue Biology. 11 (2), 172–179.

    Article  Google Scholar 

  46. Wahlgren J., De L Karlson T., Brisslert M., Vaziri Sani F., Telemo E., Sunnerhagen P., Valadi H. 2012. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucl. Acids Res. 40 (17), e130.

    Article  CAS  PubMed  Google Scholar 

  47. Lamichhane T.N., Raiker R.S., Jay S.M. 2015. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol. Pharm. 12 (10), 3650–3657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clayton A., Turkes A., Navabi H., Mason M.D., Tabi Z. 2005. Induction of heat shock proteins in B-cell exosomes. J. Cell. Sci. 118 (Pt 16), 3631–3638.

    Article  CAS  PubMed  Google Scholar 

  49. Lopatina T., Bruno S., Tetta C., Kalinina N., Porta M., Camussi G. 2014. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell. Commun. Signal. 12, 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ti D., Hao H., Tong C., Liu J., Dong L., Zheng J., Zhao Y., Liu H., Fu X., Han W. 2015. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J. Transl. Med. 13, 308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma J., Zhao Y., Sun L., Sun X., Zhao X., Sun X., Qian H., Xu W., Zhu W. 2017. Exosomes derived from akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl. Med. 6 (1), 51–59.

    Article  CAS  PubMed  Google Scholar 

  52. Salomon C., Ryan J., Sobrevia L., Kobayashi M., Ashman K., Mitchell M., Rice G.E. 2013. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One. 8 (7), e68451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alcayaga-Miranda F., Varas-Godoy M., Khoury M. 2016. Harnessing the angiogenic potential of stem cell-derived exosomes for vascular regeneration. Stem Cells Int. 2016, 3409169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu S., Wang J., Ding N., Hu W., Zhang X., Wang B., Hua J., Wei W., Zhu Q. 2015. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol. 12 (12), 355–1363.

    Google Scholar 

  55. Eldh M., Ekström K., Valadi H., Sjöstrand M., Olsson B., Jernås M., Lötvall J. 2010. Exosomes communicate protective messages during oxidative stress; Possible role of exosomal shuttle RNA. PLoS One. 5 (12), e15353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Borges F.T., Melo S.A., Özdemir B.C., Kato N., Revuelta I., Miller C.A., Gattone V.H. 2nd, LeBleu V.S., Kalluri R. 2013. TGF-β1–containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J. Am. Soc. Nephrol. 24 (3), 385–392.

    Article  CAS  PubMed  Google Scholar 

  57. Ekström E.J., Bergenfelz C., von Bülow V., Serifler F., Carlemalm E., Jönsson G., Andersson T., Leandersson K. 2014. WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol. Cancer. 13, 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. de Jong O.G., Verhaar M.C., Chen Y., Vader P., Gremmels H., Posthuma G., Schiffelers R.M., Gucek M., van Balkom B.W. 2012. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J. Extracell. Vesicles. 1. doi https://doi.org/10.3402/jev.v1i0.18396

  59. Li J., Liu K., Liu Y., Xu Y., Zhang F., Yang H., Liu J., Pan T., Chen J., Wu M., Zhou X., Yuan Z. 2013. Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity. Nat. Immunol. 14 (8), 793–803.

    Article  CAS  PubMed  Google Scholar 

  60. Crisostomo P.R., Wang Y., Markel T.A., Wang M., Lahm T., Meldrum D.R. 2008. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am. J. Physiol. Cell Physiol. 294 (3), 675–682.

    Article  CAS  Google Scholar 

  61. Yao Y., Zhang F., Wang L., Zhang G., Wang Z., Chen J., Gao X. 2009. Lipopolysaccharide preconditioning enhances the efficacy of mesenchymal stem cells transplantation in a rat model of acute myocardial infarction. J. Biomed. Sci. 16 (1), 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Han C., Sun X., Liu L., Jiang H., Shen Y., Xu X., Li J., Zhang G., Huang J., Lin Z., Xiong N., Wang T. 2016. Exosomes and their therapeutic potentials of stem cells. Stem Cells Int. 2016, 7653489.

    PubMed  Google Scholar 

  63. Desrochers L.M., Bordeleau F., Reinhart-King C.A., Cerione R.A., Antonyak M.A. 2016. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat. Commun. 7, 11958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ratajczak J., Miekus K., Kucia M. 2006. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 20 (5), 847–856.

    Article  CAS  PubMed  Google Scholar 

  65. Khan M., Nickoloff E., Abramova T., Johnson J., Verma S.K., Krishnamurthy P., Mackie A.R., Vaughan E., Garikipati V.N., Benedict C., Ramirez V., Lambers E., Ito A., Gao E., Misener S., Luongo T., Elrod J., Qin G., Houser S.R., Koch W.J., Kishore R. 2015. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ. Res. 117 (1), 52–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yuan A., Farber E.L., Rapoport A.L., Tejada D., Deniskin R., Akhmedov N.B., Farber D.B. 2009. Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One. 4 (3), e4722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Katsman D., Stackpole E.J., Domin D.R., Farber D.B. 2012. Embryonic stem cell-derived microvesicles induce gene expression changes in Müller cells of the retina. PLoS One. 7 (11), e50417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bobis-Wozowicz S., Kmiotek K., Sekula M., Kedracka-Krok S., Kamycka E., Adamiak M., Jankowska U., Madetko-Talowska A., Sarna M., Bik-Multanowski M., Kolcz J., Boruczkowski D., Madeja Z., Dawn B., Zuba-Surma E.K. 2015. Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior. Stem Cells. 33 (9), 2748–2761.

    Article  CAS  PubMed  Google Scholar 

  69. Lai R.C., Yeo R.W., Lim S.K. 2015. Mesenchymal stem cell exosomes. Semin. Cell Dev. Biol. 40, 82–88.

    Article  CAS  PubMed  Google Scholar 

  70. Kim H.S., Choi D.Y., Yun S.J., Choi S.M., Kang J.W., Jung J.W., Hwang D., Kim K.P., Kim D.W. 2012. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J. Proteome Res. 11 (2), 839–849.

    Article  CAS  PubMed  Google Scholar 

  71. Xie L., Mao M., Zhou L., Jiang B. 2016. Spheroid mesenchymal stem cells and mesenchymal stem cell-derived microvesicles: Two potential therapeutic strategies. Stem Cells Dev. 25 (3), 203–213.

    Article  CAS  PubMed  Google Scholar 

  72. Zhou Y., Xu H., Xu W., Wang B., Wu H., Tao Y., Zhang B., Wang M., Mao F., Yan Y., Gao S., Gu H., Zhu W., Qian H. 2013. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 4 (2), 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bian S., Zhang L., Duan L. Wang X., Min Y., Yu H. 2014. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J. Mol. Med. (Berl). 92 (4), 387–397.

    Article  CAS  Google Scholar 

  74. Zhang B., Yin Y., Lai R.C., Tan S.S., Choo A.B., Lim S.K. 2014. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 23 (11), 1233–1244.

    Article  CAS  PubMed  Google Scholar 

  75. Zhu Y.G., Feng X.M., Abbott J. 2014. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells. 32 (1), 116–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Akyurekli C., Le Y., Richardson R.B., Fergusson D., Tay J., Allan D.S. 2015. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev. 11 (1), 150–160.

    Article  CAS  Google Scholar 

  77. Zhang J., Guan J., Niu X., Hu G., Guo S., Li Q., Xie Z., Zhang C., Wang Y. 2015. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J. Transl. Med. 13, 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang S., Chu W.C., Lai R.C., Lim S.K., Hui J.H., Toh W.S. 2016. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage. 24 (12), 2135–2140.

    Article  CAS  PubMed  Google Scholar 

  79. Wen S., Dooner M., Cheng Y., Papa E., Del Tatto M., Pereira M., Deng Y., Goldberg L., Aliotta J., Chatterjee D., Stewart C., Carpanetto A., Collino F., Bruno S., Camussi G., Quesenberry P. 2016. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 30 (11), 2221–2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li T., Yan Y., Wang B., Qian H., Zhang X., Shen L., Wang M., Zhou Y., Zhu W., Li W., Xu W. 2012. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 22 (6), 845–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tan C.Y., Lai R.C., Wong W., Dan Y.Y., Lim S.K., Ho H.K. 2014. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res. Ther. 5 (3), 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Collino F., Pomatto M., Bruno S., Lindoso R.S., Tapparo M., Sicheng W., Quesenberry P., Camussi G. 2017. Exosome and microvesicle-enriched fractions isolated from mesenchymal stem cells by gradient separation showed different molecular signatures and functions on renal tubular epithelial cells. Stem Cell Rev. 13 (2), 226–243.

    Article  CAS  PubMed Central  Google Scholar 

  83. Aliotta J.M., Pereira M., Wen S., Dooner M.S., Del Tatto M., Papa E., Goldberg L.R., Baird G.L., Ventetuolo C.E., Quesenberry P.J., Klinger J.R. 2016. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc. Res. 110 (3), 319–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kang D., Oh S., Ahn S.M., Lee B.H., Moon M.H. 2008. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J. Proteome Res. 7 (8), 3475–3480.

    Article  CAS  PubMed  Google Scholar 

  85. Bátiz L.F., Castro M.A., Burgos P.V., Velásquez Z.D., Muñoz R.I., Lafourcade C.A., Troncoso-Escudero P., Wyneken U. 2015. Exosomes as novel regulators of adult neurogenic niches. Front. Cell Neurosci. 9, 501.

    PubMed  Google Scholar 

  86. Ratajczak J., Kucia M., Mierzejewska K., Marlicz W., Pietrzkowski Z., Wojakowski W., Greco N.J., Tendera M., Ratajczak M.Z. 2013. Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells–implications for stem cell therapies in regenerative medicine. Stem Cells Dev. 22 (3), 422–430.

    Article  CAS  PubMed  Google Scholar 

  87. Cantaluppi V., Gatti S., Medica D., Figliolini F., Bruno S., Deregibus M.C., Sordi A., Biancone L., Tetta C., Camussi G. 2012. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 82 (4), 412–427.

    Article  CAS  PubMed  Google Scholar 

  88. Ranghino A., Cantaluppi V., Grange C., Vitillo L., Fop F., Biancone L., Deregibus M.C., Tetta C., Segoloni G.P., Camussi G. 2012. Endothelial progenitor cell-derived microvesicles improve neovascularization in a murine model of hindlimb ischemia. Int. J. Immunopathol. Pharmacol. 25 (1), 75–85.

    Article  CAS  PubMed  Google Scholar 

  89. Chen L., Wang Y., Pan Y., Zhang L., Shen C., Qin G., Ashraf M., Weintraub N., Ma G., Tang Y. 2013. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem. Biophys. Res. Commun. 431 (3), 566–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Herrera M. B., Fonsato V., Gatti S., Deregibus M.C., Sordi A., Cantarella D., Calogero R., Bussolati B., Tetta C., Camussi G. 2010. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J. Cell. Mol. Med. 14 (6), 1605–1618.

    Article  CAS  PubMed  Google Scholar 

  91. Kubikova I., Konecna H., Sedo O., Zdrahal Z., Rehulka P., Hribkova H., Rehulkova H., Hampl A., Chmelik J., Dvorak P. 2009. Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin. Cytotherapy. 11 (3), 330–340.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The review was prepared within the framework of the Government Basic Research Program of the Presidium of Russian Academy of Sciences no. 42 “Fundamental research for the development of medical technologies”, section of the State task no. 0108-2018-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Payushina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheveleva, O.N., Domaratskaya, E.I. & Payushina, O.V. Extracellular Vesicles and Prospects of Their Use for Tissue Regeneration. Biochem. Moscow Suppl. Ser. A 13, 1–11 (2019). https://doi.org/10.1134/S1990747818040104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818040104

Keywords:

Navigation