Skip to main content
Log in

Lateral Heterogeneity of Cholesterol Distribution in Cell Plasma Membrane: Investigation by Microfluorimetry, Immunofluorescence, and TOF-SIMS

  • ARTICLES
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Lateral heterogeneity of cholesterol distribution in cell plasma membrane was revealed by a complex study using microfluorimetry, immunofluorescence microscopy, and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Glioblastoma cells U87MG exhibit a high motility, and cell movements are accompanied by redistribution of proteins along the membrane surface. The formation of the protein caveolin-1 clusters at one of the plasma membrane edges was detected by confocal microscopy on cells labeled with antibodies against caveolin 1. Using two-photon excitation fluorescence of a membrane probe 4-dimethylaminochalcone, membrane areas of about 200 × 200 nm were examined on glioblastoma cells. Simultaneous detection of the decay kinetics and the fluorescence spectrum revealed the presence of regions with an increased cholesterol concentration in the membrane at the poles of the live migrating cell. TOF-SIMS provided direct data with high spatial resolution indicating colocalization of cholesterol and caveolin 1 and confirmed previously published data on the association of caveolin 1 complexes with cholesterol clusters. Thus, three independent methods of cell membrane analysis testify that localization of cholesterol-enriched membrane regions correlates with morphological features of moving glioblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ridley A.J., Schwartz M.A., Burridge K., Firtel R.A., Ginsberg M.H., Borisy G., Parsons J.T., Horwitz A.R. 2003. Cell migration: Integrating signals from front to back. Science. 302 (5651), 1704–1709.

    Article  CAS  PubMed  Google Scholar 

  2. Vicente-Manzanares M., Webb D.J., Horwitz A.R. 2005. Cell migration at a glance. J. Cell Sci. 118 (21), 4917–4919.

    Article  CAS  PubMed  Google Scholar 

  3. Grande-García A., Echarri A., de Rooij J., Alderson N.B., Waterman-Storer C.M., Valdivielso J.M., del Pozo M.A. 2007. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J. Cell. Biol. 177 (4), 683–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tomassian T., Humphries L.A., Liu S.D., Silva O., Brooks D.G., Miceli M.C. 2011. Caveolin-1 orchestrates TCR synaptic polarity, signal specificity, and function in CD8 T cells. J. Immunol. 187 (6), 2993–3002.

    Article  CAS  PubMed  Google Scholar 

  5. Lange Y., Ye J., Steck T.L. 2004. How cholesterol homeostasis is regulated by plasma membrane cholesterol in excess of phospholipids. Proc. Natl. Acad. Sci. USA. 101 (32), 11 664–11 667.

    Article  Google Scholar 

  6. Borst J.W., Visser N.V., Kouptsova O., Visser A.J. 2000. Oxidation of unsaturated phospholipids in membrane bilayer mixtures is accompanied by membrane fluidity changes. Biochim. Biophys. Acta, 1487 (1), 61–73.

    Article  CAS  PubMed  Google Scholar 

  7. Henson P.M., Bratton D.L., Fadok V.A. 2001. The phosphatidylserine receptor: A crucial molecular switch? Nat. Rev. Mol. Cell Biol. 2 (8), 627–633.

    Article  CAS  PubMed  Google Scholar 

  8. Kagan V.E., Tyurin V.A., Jiang J., Tyurina Y.Y., Ritov V.B., Amoscato A.A., Osipov A.N., Belikova N.A., Kapralov A.A., Kini V., Vlasova I.I., Zhao Q., Zou M., Di P., Svistunenko D.A., Kurnikov I.V., Borisenko G.G. 2005. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1, 223.

    Article  CAS  PubMed  Google Scholar 

  9. Rao C.S., Chung T., Pike H.M., Brown R.E. 2005. Glycolipid transfer protein interaction with bilayer vesicles: Modulation by changing lipid composition. Biophys. J. 89 (6), 4017–4028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ivkov V.G., Berestovskii G.N. 1981. Dinamicheskaya struktura lipidnogo bisloya (Dynamic structure of the lipid bilayer). Moscow: Nauka.

  11. Sengupta P., Holowka D., Baird B. 2007. Fluorescence resonance energy transfer between lipid probes detects nanoscopic heterogeneity in the plasma membrane of live cells. Biophys. J. 92 (10), 3564–3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gidwani A., Holowka D., Baird B. 2001. Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells. Biochemistry. 40 (41), 12 422–12 429.

    Article  CAS  Google Scholar 

  13. Korlach J., Baumgart T., Webb W.W., Feigenson G.W. 2005. Detection of motional heterogeneities in lipid bilayer membranes by dual probe fluorescence correlation spectroscopy. BBA – Biomembranes. 1668 (2), 158–163.

  14. Lange Y., Tabei S.M.A., Ye J., Steck T.L. 2013. Stability and stoichiometry of bilayer phospholipid–cholesterol complexes: Relationship to cellular sterol distribution and homeostasis. Biochemistry. 52 (40), 6950–6959.

    Article  CAS  PubMed  Google Scholar 

  15. Sokolov A., Radhakrishnan A. 2010. Accessibility of cholesterol in endoplasmic reticulum membranes and activation of SREBP-2 switch abruptly at a common cholesterol threshold. J. Biol. Chem. 285 (38), 29480–29490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lange Y., Steck T.L. 2016. Active membrane cholesterol as a physiological effector. Chem. Phys. Lipids. 199, 74–93.

    Article  CAS  PubMed  Google Scholar 

  17. Di Vizio D., Adam R.M., Kim J., Kim R., Sotgia F., Williams T., Demichelis F., Solomon K.R., Loda M., Rubin M.A., Lisanti M.P., Freeman M.R. 2008. Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle. 7 (14), 2257–2267.

    Article  PubMed  Google Scholar 

  18. Lajoie P., Goetz J.G., Dennis J.W., Nabi I.R. 2009. Lattices, rafts, and scaffolds: Domain regulation of receptor signaling at the plasma membrane. J. Cell. Biol. 185 (3), 381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hailstones D., Sleer L.S., Parton R.G., Stanley K.K. 1998. Regulation of caveolin and caveolae by cholesterol in MDCK cells. J. Lipid. Res. 39 (2), 369–379.

    CAS  PubMed  Google Scholar 

  20. Gularyan S.K., Petrukhin A.N., Zolotavvin P.N., Svetlichnyi V.Yu., Dobtretsov G.E., Sarkisov O.M. 2006. Fluorescent probe 4-dimethylaminochalkon as a detector of structural differences of subcellular organelles in situ. Biol. Membrany (Rus.). 23 (6), 503–509.

    CAS  Google Scholar 

  21. Svetlichnyi V.Yu., Dobtretsov G.E., Gularyan S.K., Merola F., Syreishchikova T.I. 2007. The influence of cholesterol on polar groups of the lipid bilayer: Studies using fluorescent probe 4-dimethylaminochalkon. Biol. Membrany (Rus.). 24 (3), 266–272.

    Google Scholar 

  22. Chen Y., Qin J., Cai J.Y., Chen Z.W. 2009. Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations. Plos One. 4 (4), e5386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Navarro A., Anand-Apte B., Parat M.O. 2004. A role for caveolae in cell migration. FASEB J. 18 (15), 1801–1811.

    Article  CAS  PubMed  Google Scholar 

  24. Ivkov V.G., Berestovskii G.N. 1982. Lipidnyi bisloy biologicheskikh membran (Lipid bilayer of biological membranes). Moscow: Nauka.

  25. Vladimirov Yu.A., Dobtretsov G.E. 1980. Fluorestsentnye zondy v issledovanii biologicheskilh membran (Fluorescent probes in studies of biological membranes). Moscow: Nauka.

  26. Gularyan S.K., Dobtretsov G.E., Svetlichnyi V.Yu. 1996. Studies of the lipid spatial structure in human blood leukocyte by the method of non-irradiating energy transfer. Biol. Membrany (Rus.). 13, 588–597.

    CAS  Google Scholar 

  27. Ashcroft R.G., Coster H.G.L., Laver D.R., Smith J.R. 1983. The effects of cholesterol inclusion on the molecular organisation of bimolecular lipid membranes. BBA – Biomembranes, 730 (2), 231–238.

  28. Cevc G., Watts A., Marsh D. 1981. Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH, surface electrostatics, ion binding, and head-group hydration. Biochemistry. 20 (17), 4955–4965.

    Article  CAS  PubMed  Google Scholar 

  29. Gularyan S.K., Dobtretsov G.E., Polyak B.M., Svetlichnyi V.Yu., Zhukhlistova N.E., Krasovitskii B.M., Kormilova L.I., Zavodnik V.E. 2006. Fluorescent probe 4-dimethylaminochalkon: Interaction with the medium according to the data of quantum-chemical calculations. Izv. RAN. Ser. Khimich. (Rus.). 10, 1674–1679.

    Google Scholar 

  30. Bakhshiev N.G., Gularyan S.K., Dobtretsov G.E., Kirillova A.Yu., Svetlichnyi V.Yu. 2006. Solvatochromia and solvatofluorochromia of th band of the intramolecular transfer of the charge in electron spectra of the 4-dimethylaminochalkon solutions. Optika i Spektroskopia (Rus.). 100 (5), 700–708.

    CAS  Google Scholar 

  31. Gulin A., Pavlyukov M.S., Gusev S.A., Malakhova Yu.N., Buzin A.I., Chvalun S.N., Aldarov K.G., Klinov D.V., Gularyan S.K., Nadtochenko V.A. 2017. Applicability of TOF-SIMS for the assessment of lipid composition of cell membrane structures. Biochem. (Moscow) Suppl. Series A: Membr. Cell Biology. 34 (3), 215–222.

    CAS  Google Scholar 

  32. Gulin A., Nadtochenko V., Astafiev A., Pogorelova V., Rtimi S., Pogorelov A. 2016. Correlating microscopy techniques and ToF-SIMS analysis of fully grown mammalian oocytes. Analyst. 141 (13), 4121–4129.

    Article  CAS  PubMed  Google Scholar 

  33. Gómez-Moutón C., Lacalle R.A., Mira E., Jiménez-Baranda S., Barber D.F., Carrera A.C., Martínez-A C., Mañes S. 2004. Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J. Cell. Biol. 164 (5), 759–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Komura N., Suzuki K.G., Ando H., Konishi M., Koikeda M., Imamura A., Chadda R., Fujiwara T.K., Tsuboi H., Sheng R., Cho W., Furukawa K., Furukawa K., Yamauchi Y., Ishida H., Kusumi A., Kiso M. 2016. Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat. Chem. Biol. 12 (6), 402–410.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research (project nos. 16-04-00660, 17-29-06056, and 18-29-01027). Part of the TOF-SIMS measurements was performed at the expense of the subsidy issued to the IBCh RAS in support of the State task, theme 0082-2018-0005 (code AAAA-A18-118020690203-8), with the use of the instruments of the Center of the Collective Equipment ICP RAS (no. 506 694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gulin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Dunina-Barkovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlyukov, M.S., Gulin, A.A., Astafiev, A.A. et al. Lateral Heterogeneity of Cholesterol Distribution in Cell Plasma Membrane: Investigation by Microfluorimetry, Immunofluorescence, and TOF-SIMS. Biochem. Moscow Suppl. Ser. A 13, 50–57 (2019). https://doi.org/10.1134/S1990747818040098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818040098

Keywords:

Navigation