Skip to main content
Log in

Effects of Abiotic Stresses on the Content of Glycoglycerolipids in the Vacuolar Membrane of Red Beetroot

  • SHORT COMMUNICATIONS
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Glycoglycerolipids (GL) of the red beet vacuolar membrane under osmotic and oxidative stresses have been investigated. Variations of the GL content under stress conditions might be indicators of an important role of these compounds in protective mechanisms. Changes of the GL levels and the digalactosyldiacylglycerols/monogalactosyldiacylglycerol (DGDG/MGDG) ratio in the vacuolar membrane under hypoosmotic and oxidative stresses corresponded mainly to those observed in other cell membranes under majority of stresses studied, namely, the ratio increased that contributed to membrane stabilization. The changes of the GL content of vacuolar membrane caused by hyperosmotic stress notably differed. The DGDG content and DGDG/MGDG ratio significantly decreased. These alterations did not necessarily result in a decrease in the membrane stability under hyperosmotic stress, since the content of MGDG involved in the formation of a hexagonal structure and capable of destabilizing lipid bilayer also decreased. The changes of the GL level in the vacuolar membrane under hyperosmotic stress can be due to an increased degradation or reduced biosynthesis of GL; these changes may represent yet another defense mechanism of a plant cell against stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Kim K., Portis AR. 2005. Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiol. 46 (3), 522–530.

    Article  CAS  PubMed  Google Scholar 

  2. Welti R., Li W., Li M., Sang Y., Biesiada H., Zhou H.-E., Rajashekar C.B., Williams T.D., Wang X. 2002. Profiling membrane lipids in plant stress responses. J. Biol. Chem. 277, 31 994–32 002.

    Article  CAS  Google Scholar 

  3. Rozentsvet O. A., Nesterov V. N., Sinyutina N. F. 2010. The changes in the composition of cell membrane lipids and subcellular fractions of the freshwater plant Hydrilla verticillata (L. f). Royle under the influence of heavy metals. Samarskaya Luka: Problemy regionalnoy i globalnoy ekologii (Rus.). 19 (1), 61–77.

  4. Zhou Y., Pan X., Qu H., Underhill S.J. 2014. Tonoplast lipid composition and proton pump of pineapple fruit during low-temperature storage and blackheart development. J. Membr. Biol. 247, 429–439.

    Article  CAS  PubMed  Google Scholar 

  5. Ozolina N.V., Gurina V.V., Nesterkina I.S., Dudareva L.V., Katyshev A.I., Nurminsky V.N. 2017. Fatty acid composition of total lipids of the vacuolar membrane under abiotic stress. Biol. membrany. (Rus.). 34 (1), 63–69.

  6. Salyaev R.K., Kuzevanov V.Ya., Khaptagaev S.B., Kopytchuk V.N. 1981. Isolation and purification of vacuoles and vacuolar membranes from plant cells. Fiziologiya rasteniy (Rus.). 28, 1295–1305.

  7. Ozolina N.V., Nesterkina I.S., Kolesnikova E.V., Salyaev R.K., Nurminsky V.N., Rakevich A.L., Martynovich E.F., Chernyshov M. Yu. 2013. Tonoplast of Beta vulgaris L. contains detergent-resistant membrane micridomains. Planta. 237, 859–871.

    Article  CAS  PubMed  Google Scholar 

  8. Bligh E.G., Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.

    Article  CAS  PubMed  Google Scholar 

  9. Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28 (3), 350–356.

    Article  CAS  Google Scholar 

  10. Roughan P.G., Batt R.D. 1986. Quantative analysis of sulfolipid (sulfoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in plant tissues. Anal. Biochem. 22, 74–88.

    Article  Google Scholar 

  11. Wu J., Seliskar D.M., Gallagher J.L. 2005. The response of plasma membrane lipid composition in callus of the halophyte Spartina patens (Poaceae) to salinity stress. Amer. J. Botany. 92, 852–858.

    Article  CAS  Google Scholar 

  12. Omoto E., Iwasaki Y., Miyaki H., Taniguchi M. 2016. Salinity induces membrane structure and lipid changes in maize mesophyll and bundle sheath chloroplasts. Physiol. Plant. 157 (1), 13–23.

    Article  CAS  PubMed  Google Scholar 

  13. Bohn M., Luthje S., Sperling P., Heinz E., Dorffling K. 2007. Plasma membrane lipid alterations induced by cold acclimation and abscisic acid treatment of winter wheat seedlings differing in frost resistance. J. Plant Physiol. 164, 146–156.

    Article  CAS  PubMed  Google Scholar 

  14. Narayanan S., Tamura P.J., Roth M.R., Prasad P.V., Welti R. 2016. Wheat leaf lipid during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ. 39 (4), 787–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pham-Thi A.-T., Borrel-Flood C., Veira da Silva J., Justin A.M., Mazliak P. 1987. Effects of drought on [1-14C]-oleic and [1-14C]-linoleic acid desaturation in cotton leaves. Physiol. Plant. 69, 147–150.

    Article  CAS  Google Scholar 

  16. Su K., Bremer D.J., Jeannotte R., Welti R., Yang C. 2009. Membrane lipid composition and heat tolerance in cool-season turgrasses, including a hybrid bluegrass. J. Amer. Hort. Sci. 134, 511–520.

    Article  Google Scholar 

  17. Gigon A., Matos A.-R., Laffray D., Zuily-Fodil Y. Pham-Thi A.-T. 2004. Effect of drought on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann. Bot. 94, 345–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yeagle P.L. 1989. Lipid regulation of cell membrane structure and function. FASEB J. 3, 1833–1842.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed on the equipment of the CSU “Bioanalytics” of the Siberian Institute of plant physiology and biochemistry SB RAS (Irkutsk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ozolina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: GL, glycoglycerolipids; MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; SQDG, sulfoquinovosyldiacylglycerol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurina, V.V., Ozolina, N.V., Nesterkina, I.S. et al. Effects of Abiotic Stresses on the Content of Glycoglycerolipids in the Vacuolar Membrane of Red Beetroot. Biochem. Moscow Suppl. Ser. A 13, 92–95 (2019). https://doi.org/10.1134/S1990747818040062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818040062

Keywords:

Navigation