Skip to main content
Log in

Membrane TNFα: Importance for the Effector Function of Dendritic Cells and Potential Ways of Its Targeted Modulation

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Membrane TNFα (mTNFα) is expressed on many immune cell types and performs various biological functions. Dendritic cells (DC) of high-grade glioma patients exhibit impaired cytotoxic activity against TNFα-sensitive HEp-2 tumor cells. The mechanisms leading to the impairment of the TNFα- dependent tumoricidal activity of DC and the possibility of regulating the cytotoxic activity of DC mediated by the TNFα/TNF-R1 signaling pathway have been studied. The study was conducted on healthy donors and patients with newly diagnosed high-grade glioma. DC were generated by culturing the plastic-adherent peripheral blood mononuclear cell fraction in the presence of GM-CSF and interferon-α (IFN-DC). It was shown that the impairment of the cytotoxic activity of patient IFN-DC was associated with a low number of DC expressing mTNFα and a low level of TNFα mRNA expression in DC. IFN-DC of patients exhibited a tendency of high activity of the TNFα-converting enzyme (TACE), which accomplishes shedding of mTNFα from the cell membrane. An increased number of IFN-DC with mTNFα caused by TACE blocking enhanced cytotoxic activity of the patient’s IFN-DC against HEp-2 cells. It was established that exogenous interleukin-2 and extracellular DNA are up-regulators of the mTNFα expression on IFN-DC of the patients, but their effects are mediated by different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banchereau J., Steinman R. M. 1998. Dendritic cells and the control of immunity. Nature. 392, 245–252.

    Article  PubMed  CAS  Google Scholar 

  2. Chan C. W., Housseau F. 2008. The ‘kiss of death’ by dendritic cells to cancer cells. Cell Death Differ. 15 (1), 58–69.

    Article  PubMed  CAS  Google Scholar 

  3. Fanger N. A., Maliszewski C. R., Schooley K., Griffith T. S. 1999. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor–related apoptosis-inducing ligand (TRAIL). J. Exp. Med. 190, 1155–1164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Liu Sh., Yu Y., Zhang M., Wang W., Cao X. 2001. The involvement of TNF-α-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-β-stimulated human dendritic cells to tumor cells. J. Immunol. 166 (9), 5407–5415.

    Article  PubMed  CAS  Google Scholar 

  5. Korthals M., Safaian N., Kronenwett R., Maihöfer D., Schott M., Papewalis C., Diaz Blanco E., Winter M., Czibere A., Haas R., Kobbe G., Fenk R. 2007. Monocyte derived dendritic cells generated by IFN-alpha acquire mature dendritic and natural killer cell properties as shown by gene expression analysis. J. Transl. Med. 5, 46. doi 10. 1186/1479-5876-5-46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tyrinova T. V., Leplina O. Y., Mishinov S. V., Tikhonova M. A., Shevela E. Y., Stupak V. V., Pendyurin I. V., Shilov A. G., Alyamkina E. A., Rubtsova N. V., Bogachev S. S., Ostanin A. A., Chernykh E. R. 2013. Cytotoxic activity of ex-vivo generated IFNα-induced monocyte-derived dendritic cells in brain glioma patients. Cell Immunol. 284, 146–153.

    Article  PubMed  CAS  Google Scholar 

  7. Black R. A., Rauch C. T., Kozlosky C. J., Peschon J. J., Slack J. L., Wolfson M. F., Castner B. J., Stocking K. L., Reddy P., Srinivasan S., Nelson N., Boiani N., Schooley K. A., Gerhart M., Davis R., Fitzner J. N., Johnson R. S., Paxton R. J., March C. J., Cerretti D. P. 1997. A metalloproteinase disintegrin that releases tumournecrosis factor-α from cells. Nature. 385, 729–733.

    Article  PubMed  CAS  Google Scholar 

  8. Horiuchi T., Mitoma H., Harashima S., Tsukamoto H., Shimoda T. 2010. Transmembrane TNF-α: Structure, function and interaction with anti-TNF agents. Rheumatology. 49 (7), 1215–1228.

    Article  PubMed  CAS  Google Scholar 

  9. Leplina O., Tyrinova T., Tikhonova M., Shevela E., Stupak V., Mishinov S., Pendyurin I., Sadovoy M., Ostanin A., Chernykh E. 2011. Direct antitumor activity of interferon-induced dendritic cells of healthy donors and patients with primary brain tumors. In: Glioma-Explor. Its Biol. Pract. Relev. Eds Ghosh A. InTech, pp. 325–342.

    Google Scholar 

  10. Wang T., Liang Z. A., Sandford A. J., Xiong X. Y., Yang Y. Y., Ji Y. L., He J. Q. 2012. Selection of suitable housekeeping genes for real-time quantitative PCR in CD4(+) lymphocytes from asthmatics with or without depression. PLoS One. 7 (10), e48367. doi 10. 1371/journal. pone. 0048367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. von Maltzan K., Tan W., Pruett S. B. 2012. Investigation of the role of TNF-α converting enzyme (TACE) in the inhibition of cell surface and soluble TNF-α production by acute ethanol exposure. PLoS ONE. 7 (2), e29890. doi 10. 1371/journal. pone. 0029890

    Google Scholar 

  12. Shi W., Li Z. Y., Gong F. L., Xiong P., Xu Y. 1998. Comparison of the cytocidal effect induced by transmembrane and secreted TNF-alpha. Chin. J. Microbiol. Immunol. 18, 499–504.

    CAS  Google Scholar 

  13. Jiang Y., Yu M., Hu X., Han L., Yang K., Ba H., Zhang Z., Yin B., Yang X. P., Li Z., Wang J. 2017. STAT1 mediates transmembrane TNF-alpha-induced formation of deathinducing signaling complex and apoptotic signaling via TNFR1. Cell Death Differ. doi 10. 1038/cdd. 2016. 162

    Google Scholar 

  14. Hira S. K., Mondal I., Bhattacharya D., Gupta K. K., Manna P. P. 2015. Downregulation of STAT3 phosphorylation enhances tumoricidal effect of IL-15-activated dendritic cell against doxorubicin-resistant lymphoma and leukemia via TNF-α. Int. J. Biochem. Cell. Biol. 67, 1–13.

    Article  PubMed  CAS  Google Scholar 

  15. Sanarico N., Ciaramella A., Sacchi A., Bernasconi D., Bossu P., Mariani F., Colizzi V., Vendetti S. 2006. Human monocyte-derived dendritic cells differentiated in the presence of IL-2 produce proinflammatory cytokines and prime Th1 immune response. J. Leukoc. Biol. 80, 555–562.

    Article  PubMed  CAS  Google Scholar 

  16. Carpenter S., Ricci E. P., Mercier B. C., Moore M. J., Fitzgerald K. A. 2014. Post-transcriptional regulation of gene expression in innate immunity. Nat. Rev. Immunol. 14 (6), 361–376.

    Article  PubMed  CAS  Google Scholar 

  17. Chung Y. J., Zhou H. R., Pestka J. J. 2003. Transcriptional and posttranscriptional roles for p38 mitogenactivated protein kinase in upregulation of TNF-alpha expression by deoxynivalenol (vomitoxin). Toxicol. Appl. Pharmacol. 193 (2), 188–201.

    Article  PubMed  CAS  Google Scholar 

  18. Crawley J. B., Rawlinson L., Lali F. V., Page T. H., Saklatvala J., Foxwel B. M. 1997. T cell proliferation in response to interleukins 2 and 7 requires p38 MAP kinase activation. J. Biol. Chem. 272 (23), 15023–15027.

    Article  PubMed  CAS  Google Scholar 

  19. Fairhurst R., Daeipour M., Amaral M., Nel A. 1993. Activation of mitogen-activated protein kinase/ERK-2 in phytohaemagglutinin blasts by recombinant interleukin-2: Contrasting features with CD3 activation. Immunology. 79 (1), 112–118.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Gollob J. A., Schnipper C. P., Murphy E. A., Ritz J., Frank D. A. 1999. The functional synergy between IL-12 and IL-2 involves p38 mitogen-activated protein kinase and is associated with the augmentation of STAT serine phosphorylation. J. Immunol. 162 (8), 4472–4481.

    PubMed  CAS  Google Scholar 

  21. Ge L., Vujanovic N. L. 2017. Soluble TNF regulates TACE via AP-2α transcription factor in mouse dendritic cells. J. Immunol. 198 (1), 417–427.

    Article  PubMed  CAS  Google Scholar 

  22. Alyamkina E. A., Dolgova E. V., Likhacheva A. S., Rogachev V. A., Sebeleva T. E., Nikolin V. P., Popova N. A., Kiseleva E. V., Orishchenko K. E., Sakhno L. V., Gel’fgat E. L., Ostanin A. A., Chernykh E. R., Zagrebelniy S. N., Bogachev S. S., Shurdov M. A. 2010. Exogenous allogenic fragmented double-stranded DNA is internalized into human dendritic cells and enhances their allostimulatory activity. Cell Immunol. 262 (2), 120–126.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Tyrinova.

Additional information

Original Russian Text © T.V. Tyrinova, S.V. Mishinov, O.Yu. Leplina, E.V. Dolgova, A.S. Proskurina, E.V. Batorov, M.A. Tikhonova, Yu.D. Kurochkina, E.A. Oleynik, A.V. Kalinovskiy, S.V. Chernov, V.V. Stupak, S.S. Bogachev, A.A. Ostanin, E.R. Chernykh, 2018, published in Biologicheskie Membrany, 2018, Vol. 35, No. 4, pp. 280–288.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyrinova, T.V., Mishinov, S.V., Leplina, O.Y. et al. Membrane TNFα: Importance for the Effector Function of Dendritic Cells and Potential Ways of Its Targeted Modulation. Biochem. Moscow Suppl. Ser. A 12, 247–254 (2018). https://doi.org/10.1134/S199074781803008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074781803008X

Keywords

Navigation