Skip to main content
Log in

The Role of Endogenous Calcitonin Gene-Related Peptide in the Neurotransmitter Quantal Size Increase in Mouse Neuromuscular Junctions

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Changes in parameters of spontaneous acetylcholine (ACh) quantal secretion caused by prolonged high-frequency burst activity of neuromuscular junctions and possible involvement of endogenous calcitonin gene-related peptide (CGRP) and its receptors in these changes were studied. With this purpose, miniature endplate potentials (MEPPs) were recorded using standard microelectrode technique in isolated neuromuscular preparations of m. EDL–n. peroneus after a prolonged high-frequency nerve stimulation (30 Hz for 2 min). An increase in the MEPP amplitudes and time course was observed in the postactivation period that reached maximum 20–30 min after nerve stimulation and progressively faded in the following 30 min of recording. Inhibition of vesicular ACh transporter with vesamicol (1 μM) fully prevented this “wave” of the MEPP enhancement. This indicates the presynaptic origin of the MEPP amplitude increase, possibly mediated via intensification of synaptic vesicle loading with ACh and subsequent increase of the quantal size. Competitive antagonist of the CGRP receptor, truncated peptide isoform CGRP8–37 (1 μM), had no effect on spontaneous secretion parameters by itself but was able to prevent the appearance of enhanced MEPPs in the postactivation period. This suggests the involvement of endogenous CGRP and its receptors in the observed MEPP enhancement after an intensive nerve stimulation. Ryanodine in high concentration (1 μM) that blocks ryanodine receptors and stored calcium release did not influence spontaneous ACh secretion but prevented the increase of the MEPP parameters in the postactivation period. Altogether, the data indicate that an intensive nerve stimulation, which activates neuromuscular junctions and muscle contractions, leads to a release of endogenous CGRP into synaptic cleft and this release strongly depends on the efflux of stored calcium. The released endogenous CGRP is able to exert an acute presynaptic effect on nerve terminals, which involves its specific receptor action and intracellular cascades leading to intensification of ACh loading into synaptic vesicles and an increase in the ACh quantal size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Rossum D., Hanisch U. 1997. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci. Biobehav. Rev. 21, 649–678.

    Article  PubMed  Google Scholar 

  2. Csillik B., Tajti L., Kovács T., Kukla E. 1993. Distribution of calcitonin gene-related peptide in vertebrate neuromuscular junctions: Relationship to the acetylcholine receptor. J. Histochem. Cytochem. 41, 1547–1555.

    Article  PubMed  CAS  Google Scholar 

  3. Fernandez H., Chen M., Nadelhaft I., Durr J. 2003. Calcitonin gene-related peptides: Their binding sites and receptor accessory proteins in adult mammalian skeletal muscles. Neuroscience. 119, 335–345.

    Article  PubMed  CAS  Google Scholar 

  4. Matteoli M., Haimann C., Torri-Tarelli F., Polak J., Ceccarelli B., De Camilli P. 1988. Differential effect of alpha-latrotoxin on exocytosis from small synaptic vesicles and from large dense-core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction. Proc. Natl. Acad. Sci. USA. 85, 7366–7370.

    Article  PubMed  CAS  Google Scholar 

  5. Sakaguchi M., Inaishi Y., Kashihara Y., Kuno M. 1991. Release of calcitonin gene-related peptide from nerve terminals in rat skeletal muscle. J. Physiol. 434, 257–270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Uchida S., Yamamoto H., Iio S., Matsumoto N., Wang X., Yonehara N., Ima, Y., Inoki R., Yoshida H. 1990. Release of calcitonin gene-related peptide-like immunoreactive substance from neuromuscular junction by nerve excitation and its action on striated muscle. J. Neurochem. 54, 1000–1003.

    Article  PubMed  CAS  Google Scholar 

  7. Lundberg J., Franco-Cereceda A., Alving K., Delay-Goyet P., Lou Y. 1992. Release of calcitonin generelated peptide from sensory neurons. Annu. N. Y. Acad. Sci. 30, 187–193.

    Article  Google Scholar 

  8. Changeux J., Duclert A., Sekine S. 1992. Calcitonin gene-related peptides and neuromuscular interactions. Ann. N. Y. Acad. Sci. 657, 361–378.

    Article  PubMed  CAS  Google Scholar 

  9. Kimura I., Salim S., Dezaki K., Tsuneki H., Abdel-Zaher A. 1998. Calcitonin gene-related peptide potentiates nicotinic acetylcholine receptor-operated slow Ca2+ mobilization at mouse muscle endplates. Br. J. Pharmacol. 125, 277–282.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Di Angelantonio S., Giniatullin R., Costa V., Sokolova E., Nistri A. 2003. Modulation of neuronal nicotinic receptor function by the neuropeptides CGRP and substance P on autonomic nerve cells. Br. J. Pharmacol. 139, 1061–1073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Fontaine B., Klarsfeld A., Hökfelt T., Changeux J. 1986. Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci. Lett. 71, 59–65.

    Article  PubMed  CAS  Google Scholar 

  12. da Costa V., Lapa A., Godinho R. 2001. Short-and long-term influences of calcitonin gene-related peptide on the synthesis of acetylcholinesterase in mammalian myotubes. Br. J. Pharmacol. 133, 229–236.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fernandez H., Ross G., Nadelhaft I. 1999. Neurogenic calcitonin gene-related peptide: A neurotrophic factor in the maintenance of acetylcholinesterase molecular forms in adult skeletal muscles. Brain Res. 844, 83–97.

    Article  PubMed  CAS  Google Scholar 

  14. Rossi S., Dickerson I., Rotundo R. 2003. Localization of the calcitonin gene-related peptide receptor complex at the vertebrate neuromuscular junction and its role in regulating acetylcholinesterase expression. J. Biol. Chem. 278 (27), 24994–5000.

    Article  PubMed  CAS  Google Scholar 

  15. Kimura I., Okazaki M., Nojima H. 1997. Mutual dependence of calcitonin-gene related peptide and acetylcholine release in neuromuscular preparations. Eur. J. Pharmacol. 330, 123–128.

    Article  PubMed  CAS  Google Scholar 

  16. Gaydukov A., Bogacheva P., Balezina O. 2016. Calcitonin gene-related peptide increases acetylcholine quantal size in neuromuscular junctions of mice. Neurosci. Lett. 628, 17–23.

    Article  PubMed  CAS  Google Scholar 

  17. Naves L., Van der Kloot W. 2001. Repetitive nerve stimulation decreases the acetylcholine content of quanta at the frog neuromuscular junction. J. Physiol. 532, 637–647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Van der Kloot W. 2003. Loading and recycling of synaptic vesicles in the Torpedo electric organ and the vertebrate neuromuscular junction. Prog. Neurobiol. 71, 269–303.

    Article  PubMed  CAS  Google Scholar 

  19. Hodges-Savola C., Fernandez H. 1995. A role for calcitonin gene-related peptide in the regulation of rat skeletal muscle G4 acetylcholinesterase. Neurosci. Lett. 190, 117–120.

    Article  PubMed  CAS  Google Scholar 

  20. Zupanc G. 1996. Peptidergic transmission: From morphological correlates to functional implications. Micron. 27, 35–91.

    Article  PubMed  CAS  Google Scholar 

  21. Shakiryanova D., Tully A., Hewes R., Deitcher D., Levitan E. 2005. Activity-dependent liberation of synaptic neuropeptide vesicles. Nat. Neurosci. 8, 173–178.

    Article  PubMed  CAS  Google Scholar 

  22. Shakiryanova D., Klose M., Zhou Y., Gu T., Deitcher D., Atwood H., Hewes R., Levitan E. 2007. Presynaptic ryanodine receptor-activated calmodulin kinase II increases vesicle mobility and potentiates neuropeptide release. J. Neurosci. 27, 7799–7806.

    Article  PubMed  CAS  Google Scholar 

  23. Nagasaki K., Fleischer S. 1988. Ryanodine sensitivity of the calcium release channel of sarcoplasmic reticulum. Cell Calcium. 9, 1–7.

    Article  PubMed  CAS  Google Scholar 

  24. Van der Kloot W. 1991. The regulation of quantal size. Prog. Neurobiol. 36, 93–130.

    Article  PubMed  Google Scholar 

  25. Gracz L., Wang W., Parsons S. 1988. Cholinergic synaptic vesicle heterogeneity: Evidence for regulation of acetylcholine transport. Biochemistry. 27, 5268–5274.

    Article  PubMed  CAS  Google Scholar 

  26. Searl T., Prior C., Marshall I. 1991. Acetylcholine recycling and release at rat motor nerve terminals studied using (-)-vesamicol and troxpyrrolium. J. Physiol. 444, 99–116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Van der Kloot W., Colasante C., Cameron R., Molgó J. 2000. Recycling and refilling of transmitter quanta at the frog neuromuscular junction. J. Physiol. 523 (1), 247–258.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wong M. Y., Shakiryanova D., Levitan E. S. 2009. Presynaptic ryanodine receptor-CamKII signaling is required for activity-dependent capture of transiting vesicles. J. Mol. Neurosci. 37 (2), 146–150.

    Article  PubMed  CAS  Google Scholar 

  29. Wong M. Y., Cavolo S. L., Levitan E. S. 2015. Synaptic neuropeptide release by dynamin-dependent partial release from circulating vesicles. Mol. Biol. Cell. 26 (13), 2466–2474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Russell F., King R., Smillie S., Kodji X., Brain S. 2014. Calcitonin gene-related peptide: Physiology and pathophysiology. Physiol. Rev. 94, 1099–1142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Scalettar B. 2006. How neurosecretory vesicles release their cargo. Neurosci. 12, 164–176.

    Google Scholar 

  32. Levitan E. 2008. Signaling for vesicle mobilization and synaptic plasticity. Mol. Neurobiol. 37, 39–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Scuka M., Mozrzymas J. W. 1992. Postsynaptic potentiation and desensitization at the vertebrate end-plate receptors. Prog. Neurobiol. 38 (1), 19–33.

    Article  PubMed  CAS  Google Scholar 

  34. Van der Kloot W., Molgó J. 1994. Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol. Rev. 74, 899–991.

    Article  PubMed  Google Scholar 

  35. Andreose J., Fumagalli G., Clementi F. 1994. On the effect of ageing on the distribution of vasoactive intestinal polypeptide and calcitonin gene-related peptide in the rat brain. Neurosci. Lett. 171, 167–171.

    Article  PubMed  CAS  Google Scholar 

  36. Li J., Dahlström A., Kling-Petersen A. 1992. Influence of spinal cord transection on the presence and axonal transport of CGRP-, chromogranin A-, VIP-, synapsin I-, and synaptophysin-like immunoreactivities in rat motor nerve. J. Neurobiol. 23, 1094–1110.

    Article  PubMed  CAS  Google Scholar 

  37. Sala C., Andreose J., Fumagalli G., Lømo T. 1995. Calcitonin gene-related peptide: Possible role in formation and maintenance of neuromuscular junctions. J. Neurosci. 15, 520–528.

    Article  PubMed  CAS  Google Scholar 

  38. Van der Kloot W., Benjamin W., Balezina O. 1998. Calcitonin gene-related peptide acts presynaptically to increase quantal size and output at frog neuromuscular junctions. J. Physiol. 507 (3), 689–695.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Macdonald W., Nielsen O., Clausen T. 2008. Effects of calcitonin gene-related peptide on rat soleus muscle excitability: Mechanisms and physiological significance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295 (4), 1214–1223.

    Article  CAS  Google Scholar 

  40. Lu B., Fu W. M. 1995. Regulation of postsynaptic responses by calcitonin gene related peptide and ATP at developing neuromuscular junctions. Can. J. Physiol. Pharmacol. 73 (7), 1050–1056.

    Article  PubMed  CAS  Google Scholar 

  41. Lu B., Fu W. M., Greengard P., Poo M. M. 1993. Calcitonin gene-related peptide potentiates synaptic responses at developing neuromuscular junction. Nature. 363 (6424), 76–79.

    Article  PubMed  CAS  Google Scholar 

  42. Fong S., McLennan I., McIntyre A., Rei, J., Shennan K., Bewick G. 2010. TGF-beta2 alters the characteristics of the neuromuscular junction by regulating presynaptic quantal size. Proc. Natl. Acad. Sci. USA. 107, 13515–13519.

    Article  PubMed  Google Scholar 

  43. Melo C., Mele M., Curcio M., Comprido D., Silva C, Duarte C. 2013. BDNF regulates the expression and distribution of vesicular glutamate transporters in cultured hippocampal neurons. PLoS One. 8, e53793.

    Google Scholar 

  44. Van der Kloot W., Brănişteanu D. 1992. Effects of activators and inhibitors of protein kinase A on increases in quantal size at the frog neuromuscular junction. Pflugers. Arch. 420, 336–341.

    Article  PubMed  Google Scholar 

  45. Hoffmann C., Weigert C. 2017. Skeletal muscle as an endocrine organ: The role of myokines in exercise adaptations. Cold Spring Harb. Perspect. Med. 7 (11), a029793.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Bogacheva.

Additional information

Original Russian Text © P.O. Bogacheva, E.A. Golikova, O.P. Balezina, 2018, published in Biologicheskie Membrany, 2018, Vol. 35, No. 4, pp. 297–308.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogacheva, P.O., Golikova, E.A. & Balezina, O.P. The Role of Endogenous Calcitonin Gene-Related Peptide in the Neurotransmitter Quantal Size Increase in Mouse Neuromuscular Junctions. Biochem. Moscow Suppl. Ser. A 12, 268–277 (2018). https://doi.org/10.1134/S1990747818030029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818030029

Keywords

Navigation