Advertisement

Glutathione transferase activity of vacuoles, plastids, and tissue extracts of red beetroot

  • E. V. Pradedova
  • O. D. Nimaeva
  • I. S. Truchan
  • R. K. Salyaev
Articles
  • 33 Downloads

Abstract

Glutathione transferase (GST) activity revealed in vacuoles of red beetroot (Beta vulgaris L.) cells was investigated in comparison with the GST activity of plastids and extracts of tissues. The level of GST activity determined by spectrophotometric method proved fairly high in water extracts and membrane fractions of isolated vacuoles and plastids, as well as in water extracts of tissues. In the objects studied, pH dependence of the GST activity slightly differed. Optimal pH for the vacuolar GST activity was in the range 7.0–7.5, for the GST of plastids and tissue extracts it was 7.5. The GSTs differed in specificity to the substrates fluorodifen and ethacrynic acid. The activity of the vacuolar and tissue extract GSTs with fluorodifen was significantly higher than that of the GST from plastids. Ethacrynic acid, often used as a competitive inhibitor of GST, almost completely inhibited the GST activity assayed with 1-chloro-2,4-dinitrobenzene as a main substrate. However, ethacrynic acid was a substrate only for the GSTs of vacuoles and tissue extract, but not for the GST of plastids. Using zymography allowing estimation of the GST activity in a gel after electrophoresis of proteins, several zones of enzymatic activity were revealed in all objects that may correspond to different isozymes. It was found that the composition of the vacuolar GST isoforms and their substrate specificity may differ from the GSTs of other cellular structures. It is assumed that vacuole, having quite high activity of GST, should make a significant contribution to intracellular detoxification processes.

Keywords

Beta vulgaris vacuoles plastids glutathione-S transferases xenobiotics detoxication 

Abbreviations

CDNB

1-chloro-2,4-dinitrobenzene

EA

ethacrynic acid

FD

fluorodifen

GSH

reduced form of glutathione

GST

glutathione-S-transferase

MDH

malate dehydrogenase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riechers D.E., Zhang Q., Xu F., Vaughn K.C. 2003. Tissue-specific expression and localization of safenerinduced glutathione S-transferase proteins in Triticum tauschii. Planta. 217 (5), 831–840.CrossRefPubMedGoogle Scholar
  2. 2.
    Mohsenzadeh S., Esmaeili M., Moosavi F., Shahrtash M., Saffari B., Mohabatkar H. 2011. Plant glutathione S-transferase classification, structure and evolution. Afr. J. Biotechnol. 10 (42), 8160–8165.CrossRefGoogle Scholar
  3. 3.
    Öztetik E.A. 2008. Tale of plant glutathione S-transferases: Since 1970. Bot. Rev. 74 (3), 419–437.CrossRefGoogle Scholar
  4. 4.
    Droog F., Hooykaas P., Van der Zaal B.J. 1995. 2,4- Dichlorophenoxyacetic acid and related chlorinated compounds inhibit two auxin-regulated type-III tobacco glutathione S-transferases. Plant Physiol. 107 (4), 1139–1146.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Edwards R., Dixon D.P., Walbot V. 2000. Plant glutathione S-transferase: Enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5 (5), 193–198.CrossRefPubMedGoogle Scholar
  6. 6.
    Edwards R., Dixon D.P. 2005. Plant glutathione transferases. Meth. Enzymol. 401, 169–186.CrossRefPubMedGoogle Scholar
  7. 7.
    Dixon D.P., Davis B.G., Edwards R. 2002. Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in A. thaliana. J. Biol. Chem. 277 (34), 30859–30869.Google Scholar
  8. 8.
    Deponte M. 2013. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta. 1830 (5), 3217–3266.CrossRefPubMedGoogle Scholar
  9. 9.
    Meyer A.J., Rausch T. 2008). Biosynthesis, compartmentation and cellular functions of glutathione in plant cells. In: Sulfur metabolism in phototrophic organisms. Eds. Hell R., Dahl C., Knaff D., Leustek T. Dordrecht: Springer Verlag, p. 165–188.Google Scholar
  10. 10.
    Flury T., Wagner E., Kreuz K. 1996. An inducible glutathione S-transferase in soybean hypocotylsis localized in the apoplast. Plant Physiol. 112 (3), 1185–1190.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Takahashi Y., Hasezawa S., Kusaba M., Nagata T. 1995. Expression of the auxin-regulated parA gene in transgenic tobacco and nuclear localization of its gene product. Planta. 196 (1), 111–117.CrossRefPubMedGoogle Scholar
  12. 12.
    Carter C., Pan S., Zouhar J., Avila E.L., Girke T., Raikhel N.V. 2004. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell. 16 (12), 3285–3303.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dixon D., Hawkins T., Hussey J. Edwards R. 2009. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J. Ex. Bot. 60 (4), 1207–1218.CrossRefGoogle Scholar
  14. 14.
    Leigh R.A., Branton D. 1976. Isolation of vacuoles from root storage tissue of Beta vulgaris L. Plant Physiol. 58 (5), 656–662.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kuzevanov V.Ya, Katkov B.B., Saliaev R.K. 1985). General principles of isolation of vacuoles and vacuolar membranes. In: Struktura i funktsii biologicheskikh membran rastenii (Structure and function of plant biological membranes). Eds. Saliaev R.K., Voinikov V.K. Novosibirsk: Nauka, p. 93–107.Google Scholar
  16. 16.
    Asada K., Badger M.R. 1984. Photoreduction of 18O2 and H2 18O2 with concomitant evolution of 16O2 in intact spinach chloroplasts: Evidence for scavenging of hydrogen peroxide by peroxidase. Plant Cell Physiol. 25 (7), 1169–1179.Google Scholar
  17. 17.
    Edwards G.E., Nakamoto H., Bunell J.N., Hatch M.D. 1985. Pyruvate, Pi dikinase and NADP-malate dehydrogenase in C4 photosynthesis: Properties and mechanism of light/dark regulation. Annu. Rev. Plant Physiol. 36, 255–286.CrossRefGoogle Scholar
  18. 18.
    Yudina R.S. 2012. Malate dehydrogenase in plants: Its genetics, structure, localization and use as a marker. Advances in Bioscience and Biotechnology. 3 (4), 370–377.CrossRefGoogle Scholar
  19. 19.
    Levites E.V., 1986. Genetika izofermentov rastenii (Genetics of plant isoenzymes). Novosibirsk: Nauka, Siberian Branch.Google Scholar
  20. 20.
    Habig W.H., Pabst M.J., Jakoby W.B. 1974. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249 (22), 7130–7139.PubMedGoogle Scholar
  21. 21.
    Kilili K.G., Atanassova N., Vardanyan A. Clatot N., Al-Sabarna K., Kanellopoulos P.N., Makris A.M., Kampranis S.C. 2004. Differential roles of tau class glutathione S-transferases in oxidative stress. J. Biol. Chem. 279 (23), 24540–24551.CrossRefPubMedGoogle Scholar
  22. 22.
    Pascal S., Scalla R. 1999. Purification and characterization of a safener-induced glutathione S-transferase from wheat (Triticum aestivum). Physiol. Plant. 106 (1), 17–27.CrossRefGoogle Scholar
  23. 23.
    Bradford M. 1976. A rapid and sensitive method for the quantitation of protein utilising the principal of protein- dye binding. Anal. Biochem. 72, 248–254.CrossRefPubMedGoogle Scholar
  24. 24.
    Gaal O., Medgyesi G.A., Vereczke, L. 1980. Electrophoresis in the Separation of Biological Macromolecules. New York: John Wiley and Sons.Google Scholar
  25. 25.
    Gupta S., Rathaur S. 2005. Filarial glutathione S-transferase: Its induction by xenobiotics and potential as drug target. Acta Biochim. 52 (2), 493–500.Google Scholar
  26. 26.
    Marrs K.A. 1996. The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 127–158.CrossRefPubMedGoogle Scholar
  27. 27.
    Zybailov B., Rutschow H., Friso G., Rudella A., Emanuelsson O., Sun Q., Van Wijk K.J. 2008. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One. 3 (4). doi 10.1371journalpone.0001994Google Scholar
  28. 28.
    Edwards R., Cole D.J. 1996. Glutathione transferases in wheat (Triticum) species with activity toward fenoxaprop-ethyl and other herbicides. Pestic. Biochem. Physiol. 54 (2), 96–104.CrossRefGoogle Scholar
  29. 29.
    Cummins I., Cole D.J., Edwards R. 1997. Purification of multiple glutathione transferases involved in herbicide detoxification from wheat (Triticum aestivum L.) treated with the safener fenchlorazole-ethyl. Pestic. Biochem. Physiol. 59 (1), 35–49.CrossRefGoogle Scholar
  30. 30.
    Zettl R., Schell J., Palme K. 1994. Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3H]indole-3-acetic acid: Identification of a glutathione S-transferase (photoafinity labeling/auxinbinding protein). Plant Biology. 91 (2), 689–693.Google Scholar
  31. 31.
    DeRidder B., Dixon D., Beussman D.J. Edwards R., Goldsbrough P.B. 2002. Induction of glutathione S-transferases in Arabidopsis by herbicide safeners. Plant Physiol. 130 (3), 1497–1505.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mozer T.J., Tiemeier D.C., Jaworski E.G. 1983. Purification and characterization of corn glutathione S-transferase. Biochemistry. 22 (5), 1068–1072.CrossRefPubMedGoogle Scholar
  33. 33.
    Zeng Q.-Y., Lu H., Wang X.-R. 2005. Molecular characterization of a glutathione transferase from Pinus tabulaeformis (Pinaceae). Biochimie. 87 (5), 445–455.CrossRefPubMedGoogle Scholar
  34. 34.
    Dixon D.P., Cole D.J., Edwards R. 1998. Purification, regulation and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type-III GSTs. Plant Mol. Biol. 36 (1), 75–87.CrossRefPubMedGoogle Scholar
  35. 35.
    Cottingham C.K., Hatzios K.K., Meredith S. 1998. Influence of chemical treatments on glutathione S-transferases of maize with activity towards metolachlor and cinnamic acid. Z. Naturforsch. 53 (11–12), 973–979.Google Scholar
  36. 36.
    Katkov B.B., Korzun A.M., Saliaev R.K. 1990. Preservation of native features of beetroot vacuoles, isolated in solutions of KCL and sorbitol. Fisiologiya rasteniy (Rus). 37 (2), 362–371.Google Scholar
  37. 37.
    Phillips M.F., Mantle T.J. 1991. The initial-rate kinetics of mouse glutathione S-transferase YfYf. Evidence for an allosteric site for ethacrynic acid. Biochem. J. 275 (3), 703–709.PubMedGoogle Scholar
  38. 38.
    Nóvoa-Valiñas M.C. Pérez-López M., Melgar M.J. 2002. Comparative study of the purification and characterization of the cytosolic glutathione S-transferases from two salmonid species: Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 131 (2), 207–213.CrossRefPubMedGoogle Scholar
  39. 39.
    Cummins I., Cole D.J., Edwards R. 1999. A role for glutathione S-transferase functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J. 18 (3), 285–292.CrossRefPubMedGoogle Scholar
  40. 40.
    Dixon D., Cummins L., Cole D.J., Edwards R. 1998. Glutathione-mediated detoxification system in plants. Curr. Opin. Plant Biol. 1 (3), 258–266.CrossRefPubMedGoogle Scholar
  41. 41.
    Irzyk C.P., Fuerst E. 1993. Purification and characterization of a glutathione S-transferase from benoxacortreated maize (Zea mays). Plant Physiol. 102 (3), 803–810.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gronwald J.W., Plaisance K.L. 1998. Isolation and characterization of glutathione S-transferase isozymes from sorghum. Plant Physiol. 117 (3), 877–892.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Deng F., Nagao A., Shim I.S., Usui K. 1996. Induction of glutathione S-transferase isozymes in rice shoots treated with a combination of pretilachlor and fenclorim. J. Weed Sci. Tech. 42 (3), 277–283.CrossRefGoogle Scholar
  44. 44.
    Nimaeva O.D., Pradedova E.V., Saliaev R.K. 2014. Activity and isoenzyme composition of vacuolar peroxidase from the cells of beetroot at various stages of ontogenesis and after changes in storage conditions. Fisiologiya rasteniy (Rus.). 61 (3), 350–358.Google Scholar
  45. 45.
    Frova C. 2006. Glutathione transferases in the genomics era: New insights and perspectives. Biomol. Eng. 23 (4), 149–169.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. V. Pradedova
    • 1
  • O. D. Nimaeva
    • 1
  • I. S. Truchan
    • 1
  • R. K. Salyaev
    • 1
  1. 1.Siberian Institute of Plant Physiology and BiochemistrySiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations