Induction of calcium-dependent nonspecific permeability of the inner membrane in liver mitochondria of mammals and birds: A comparative study

  • M. V. Dubinin
  • A. A. Vedernikov
  • E. I. Khoroshavina
  • S. I. Adakeeva
  • V. N. Samartsev
Articles

Abstract

The kinetics of the processes accompanying the induction of Ca2+-dependent permeability (pore opening) of the inner membrane—swelling of organelles and Ca2+ release from the matrix—was studied in isolated liver mitochondria of mammals (mice, rats, and rabbits) and birds (pigeons and guinea fowls). It was found that the mitochondria of rats, pigeons, and guinea fowls of the gray-speckled population (GSP) are similar in terms of respiration and oxidative ATP synthesis, whereas mitochondria of rabbits exhibit a greater degree of coupling of respiration and ATP synthesis, and mitochondria of mice and Zagorskaya White breed (ZWB) guinea fowls, a lower degree of coupling. It was established that mammalian mitochondria energized by succinate oxidation and incubated with 1 mM of inorganic phosphate are able to swell upon the addition of 125 nmol of CaCl2 per 1 mg protein. Under these conditions, mitochondria of GSP and ZWB guinea fowls and pigeons are capable of swelling upon addition of at least 875, 875 and 1000 nmol of CaCl2 per 1 mg protein, respectively. Cyclosporin A (CsA, 1 μM) inhibits mitochondrial swelling. It was shown that mitochondria of mammalians and guinea fowls but not of pigeons are able to effectively absorb and retain Ca2+ in the matrix. Calcium retention capacity of mitochondria from rats, mice, rabbits, GSP, and ZWB guinea fowls were, respectively, 70, 57, 38, 844 and 793 nmol of CaCl2 per 1 mg of protein. In the presence of an oxidizing agent tert-butylhydroperoxide (TBH), the induction of the Ca2+-dependent pore in the mitochondria was observed upon addition of CaCl2 in substantially smaller quantities. TBH was most effective in the case of rabbit mitochondria and had the lowest efficiency in the case of guinea fowl and pigeon mitochondria.

Keywords

liver mitochondria Ca2+-dependent pore inorganic phosphate cyclosporin A oxidative stress birds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saris N.E., Carafoli E. 2005. A historical review of cellular calcium handling, with emphasis on mitochondria. Biokhimia. (Rus.). 70, 231–239.Google Scholar
  2. 2.
    Lemasters J.J., Theruvath T.P., Zhong Z., Nieminen A.L. 2009. Mitochondrial calcium and the permeability transition in cell death. Biochim. Biophys. Acta. 1787, 1395–1401.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Rasola A., and Bernardi P. 2011. Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell. Calcium. 50, 222–233.CrossRefPubMedGoogle Scholar
  4. 4.
    Zorov D.B., Juhaszova M., Sollott S.J. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Gellerich F.N., Gizatullina Z., Gainutdinov T., Muth K., Seppet E., Orynbayeva Z., Vielhaber S. 2013. The control of brain mitochondrial energization by cytosolic calcium: The mitochondrial gas pedal. IUBMB Life. 65, 180–190.CrossRefPubMedGoogle Scholar
  6. 6.
    Chalmers S., Nicholls D.G. 2003. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J. Biol. Chem. 278, 19062–19070.CrossRefPubMedGoogle Scholar
  7. 7.
    Skulachev V.P., Bogachev A.V., Kasparinsky F.O. 2010. Membrannaja bioenergetika (Membrane bioenergetics). M.: Moscow University Press.Google Scholar
  8. 8.
    Siemen D., Ziemer M. 2013. What is the nature of the mitochondrial permeability transition pore and what is it not? IUBMB Life. 65, 255–262.CrossRefPubMedGoogle Scholar
  9. 9.
    Malhi H., Guicciardi M.E., Gores G.J. 2010. Hepatocyte death: A clear and present danger. Physiol. Rev. 90, 1165–1194.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Zorov D.B., Plotnikov E.Y., Jankauskas S.S., Isaev N.K., Silachev D.N., Zorova L.D., Pevzner I.B., Pulkova N.V., Zorov S.D., Morosanova M.A. 2012. The phenoptosis problem: What is causing the death of an organism? Lessons from acute kidney injury. Biokhimia. (Rus.). 77, 893–906.Google Scholar
  11. 11.
    Skulachev V.P. 2012. What is “phenoptosis” and how to fight it? Biokhimia. (Rus.). 77, 827–846.Google Scholar
  12. 12.
    Leung A.W., Varanyuwatana P., Halestrap A.P. 2008. The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J. Biol. Chem. 283, 26312–26323.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Giorgio V., von Stockum S., Antoniel M., Fabbro A., Fogolari F., Forte M., Glick G.D., Petronilli V., Zoratti M., Szabó I., Lippe G., Bernardi P. 2013. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl. Acad. Sci USa. 110, 5887–5892.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Bonora M., Bononi A., De Marchi E., Giorgi C., Lebiedzinska M., Marchi S., Patergnani S., Rimessi A., Suski J.M., Wojtala A., Wieckowski M.R., Kroemer G., Galluzzi L., Pinton P. 2013. Role of the c subunit of the FOATP synthase in mitochondrial permeability transition. Cell Cycle. 12, 674–683.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Basso E., Petronilli V., Forte M.A., Bernardi P. 2008. Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J. Biol. Chem. 283, 26307–26311.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Varanyuwatana P., Halestrap A.P. 2012. The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion. 12, 120–125.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Kozhina O.V., Samartsev V.N. 2010. Uncoupling activity of fatty acids in liver mitochondria in the presence of substrates of ADP/ATPand aspartate/glutamate antiporters is increased under oxidative stress. Biol. Membrany (Rus.). 27, 184–188.Google Scholar
  18. 18.
    Ronchi J.A., Vercesi A.E., Castilho R.F. 2011. Reactive oxygen species and permeability transition pore in rat liver and kidney mitoplasts. J. Bioenerg. Biomembr. 43, 709–715.CrossRefPubMedGoogle Scholar
  19. 19.
    Azzolin L., von Stockum S., Basso E., Petronilli V., Forte M.A., Bernardi P. 2010. The mitochondrial permeability transition from yeast to mammals. FEBS Lett. 584, 2504–2509.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Barja G. 2002. Rate of generation of oxidative stressrelated damage and animal longevity. Free Radic. Biol. Med. 33, 1167–1172.CrossRefPubMedGoogle Scholar
  21. 21.
    Speakman J.R. 2005. Body size, energy metabolism and lifespan. J. Exp. Biol. 208, 1717–1730.CrossRefPubMedGoogle Scholar
  22. 22.
    Hulbert A.J., Pamplona R., Buffenstein R., Buttemer W.A. 2007. Life and death: Metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 87, 1175–1213.CrossRefPubMedGoogle Scholar
  23. 23.
    Furness L.J., Speakman J.R. 2008. Energetics and longevity in birds. Age (Dordr). 30, 75–87.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Montgomery M.K., Hulbert A.J., Buttemer W.A. 2011. The long life of birds: The rat-pigeon comparison revisited. PLoS One. 6, e24138. doi: 10.1371/journalpone.0024138.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Vedernikov A.A., Dubinin M.V., Zabiakin V.A., Samartsev V.N. 2015. Ca2+-dependent nonspecific permeability of the inner membrane of liver mitochondria in the guinea fowl (Numida meleagris). J. Bioenerg. Biomembr. doi: 10.1007/s10863-015-9606-z.Google Scholar
  26. 26.
    Lukyanov A.S. 2008. Bioetika s osnovami bioprava: uchebnoe posobie (Bioethics with Grounds of Biolaws. A handbook). M.: Nauchnyi Mir.Google Scholar
  27. 27.
    Markova O.V., Bondarenko D.I., Samartsev V.N. 1999. The anion-carrier mediated uncoupling effect of dicarboxylic fatty acids in liver mitochondria depends on the position of the second carboxyl group. Biokhimia. (Rus.). 64, 679–685.Google Scholar
  28. 28.
    Hinkle P.C., Yu M.L. 1979. The phosphorus/oxygen ratio of mitochondrial oxidative phosphorilation. J. Biol. Chem. 254, 2450–2455.PubMedGoogle Scholar
  29. 29.
    Dubinin M.V., Adakeeva S.I., Samartsev V.N. 2013. Long-chain a,?-dioic acids as inducers of cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria loaded with calcium or strontium ions. Biokhimia. (Rus.). 78, 533–540.Google Scholar
  30. 30.
    Novgorodov S.A., Gudz T.I., Obeid L.M. 2008. Longchain ceramide is a potent inhibitor of the mitochondrial permeability transition pore. J. Biol. Chem. 283, 24707–24717.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Rolfe D.E. Brand M.D. 1997. The physiological significance of mitochondrial proton leak in animal cells and tissues. Biosci. Rep. 17, 9–16.CrossRefPubMedGoogle Scholar
  32. 32.
    Brand M.D., Turner N., Ocloo A., Else P.L., Hulbert A.J. 2003. Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochem. J. 376, 741–748.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Samartsev V.N., Polishchuk L.S., Paydyganov A.P., Zeldi I.P. 2004. Features of the uncoupling effect of fatty acids in liver mitochondria of mammals with different body weight. Biokhimia (Rus.). 69, 832–842.Google Scholar
  34. 34.
    Zabiyakin V.A. 2005. Polyvariability of pigmentation of fowl feathering. Ptitsevodstvo (Rus.). 10, 14–17.Google Scholar
  35. 35.
    Samartsev V.N., Vedernikov A.A., Dubinin M.V., Zabiyakin V.A. 2014. Comparative study of free oxidation in liver mitochondria of “wild”gray-speckled population and productive domestic breeds of guinea fowl (Numida meleagris). Zh. Evol. Biokhim. Fiziol. (Rus.). 50, 160–162.Google Scholar
  36. 36.
    Petronilli V., Cola C., Massari S., Colonna R., Bernardi P. 1993. Physiological effectors modify valtage sensing by the cyclosporine A-sensitive permeability transition pore of mitochondria. J. Biol. Chem. 268, 21939–21945.PubMedGoogle Scholar
  37. 37.
    Gostimskaya I.S., Grivennikova V.G., Zharova T.V., Bakeeva L.E., Vinogradov A.D. 2003. In situ assay of the intramitochondrial enzymes: use of alamethicin for permeabilization of mitochondria. Anal. Biochem. 313, 46–52.CrossRefPubMedGoogle Scholar
  38. 38.
    Brustovetsky N., Brustovetsky T., Jemmerson R., Dubinsky J.M. 2002. Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J. Neurochem. 80, 207–218.CrossRefPubMedGoogle Scholar
  39. 39.
    Murphy A.N., Bredesen D.E., Gortopassi G., Wang E., Fiskum G. 1996. Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc. Natl. Acad. Sci. USA. 93, 9893–9898.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. V. Dubinin
    • 1
  • A. A. Vedernikov
    • 1
  • E. I. Khoroshavina
    • 1
  • S. I. Adakeeva
    • 1
  • V. N. Samartsev
    • 1
  1. 1.Mari State UniversityYoshkar-OlaRussia

Personalised recommendations