Simple model of local ordering of DPPC lipids in contact with cholesterol



Smaller area per molecule in a DPPC-cholesterol multicomponent monolayers than in pure DPPC suggests that DPPC lipids straighten when in contact with cholesterol. Using flexible strings model that imitates entropic repulsion between lipid chains in the membrane, one can reproduce the DPPC-cholesterol area per molecule diagram at a low cholesterol concentration. Using an analytical interpolation we construct a pure cholesterol membrane, which allows us to calculate area per molecule in cholesterol “membrane” with small DPPC concentration. The last result suggests the area per lipid in a large cholesterol concentration DPPC membrane. The parameters found by fitting our model results to the experimental area-concentration diagram imply that cholesterol exerts greater lateral pressure in the membrane than DPPC.


flexible strings model lipid membrane analytical calculation path integral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Needham D., McIntosh T.J., Evans E. 1988. Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry (Mosc.). 27 (13), 4668–4673.CrossRefGoogle Scholar
  2. 2.
    Bloom M., Evans E., Mouritsen O.G. 1991. Physical properties of the fluid lipid-bilayer component of cell membranes: A perspective. Q. Rev. Biophys. 24 (3), 293–397.PubMedCrossRefGoogle Scholar
  3. 3.
    McMullen T.P., McElhaney R.N. 1996. Physical studies of cholesterol-phospholipid interactions. Curr. Opin. Colloid Interface Sci. 1 (1), 83–90.CrossRefGoogle Scholar
  4. 4.
    Nakanishi M., Hirayama E., Kim J. 2001. Characterisation of myogenic cell membrane: II. Dynamic changes in membrane lipids during the differentiation of mouse C2 myoblast cells. Cell Biol. Int. 25 (10), 971–979.PubMedCrossRefGoogle Scholar
  5. 5.
    Cornelius F. 2001. Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. Biochemistry (Mosc.). 40 (30), 8842–8851.CrossRefGoogle Scholar
  6. 6.
    Cantor R.S. 1999. Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 76 (5), 2625–2639.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Buchwald H., O’Dea T.J., Menchaca H.J., Michalek V.N., Rohde T.D. 2000. Effect of plasma cholesterol on red blood cell oxygen transport. Clin. Exp. Pharmacol. Physiol. 27 (12), 951–955.PubMedCrossRefGoogle Scholar
  8. 8.
    McConnell H.M., Radhakrishnan A. 2003. Condensed complexes of cholesterol and phospholipids. Biochim. Biophys. Acta. Biomembr. 1610 (2), 159–173.CrossRefGoogle Scholar
  9. 9.
    Edholm O., Nagle J.F. 2005. Areas of molecules in membranes consisting of mixtures. Biophys. J. 89 (3), 1827–1832.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Alberts B. 2008. Molecular biology of the cell. New York: Garland Science.Google Scholar
  11. 11.
    Mukhin S.I., Baoukina S. 2005. Analytical derivation of thermodynamic characteristics of lipid bilayer from a flexible string model. Phys. Rev. E. 71 (6), 061918.CrossRefGoogle Scholar
  12. 12.
    Mukhin S.I., Kheyfets B.B. 2014. Pore formation phase diagrams for lipid membranes. JETP Lett. 99 (6), 358–362.CrossRefGoogle Scholar
  13. 13.
    Drozdova A.A., Mukhin S.I. 2013. Opening barrier renormalization by membrane local curvature fluctuations around the mechanosensitive channel: Analytical expression. Biophys. J. 104 (2, Suppl. 1), 244a.CrossRefGoogle Scholar
  14. 14.
    Brown D.A., London E. 2000. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275 (23), 17221–17224.PubMedCrossRefGoogle Scholar
  15. 15.
    Pavlov K.V., Akimov S.A., Bashkirov P.V., Boldyrev I.A., Tellford W.G., Molotkovskaya I.M. 2009. Influence of ganglioside GM1 on formation and properties of rafts in lipid membranes. Biophys. J. 96 (3, Supplement 1), 448a.CrossRefGoogle Scholar
  16. 16.
    Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387 (6633), 569–572.PubMedCrossRefGoogle Scholar
  17. 17.
    Marsh D. 2010. Liquid-ordered phases induced by cholesterol: a compendium of binary phase diagrams. Biochim. Biophys. Acta. 1798 (3), 688–699.PubMedCrossRefGoogle Scholar
  18. 18.
    Mukhin S.I., Kheyfets B.B. 2010. Analytical approach to thermodynamics of bolalipid membranes. Phys. Rev. E. 82 (5), 051901.CrossRefGoogle Scholar
  19. 19.
    Israelachvili J.N. 2011. Intermolecular and surface forces. Burlington, MA: Academic Press.Google Scholar
  20. 20.
    Hill T.L. 1987. Physics. An introduction to statistical thermodynamics. New York: Dover Publications.Google Scholar
  21. 21.
    Lindahl E., Edholm O. 2000. Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys. J. 79 (1), 426–433.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Gullingsrud J., Schulten K. 2004. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys. J. 86 (6), 3496–3509.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Nagle J.F., Tristram-Nagle S. 2000. Structure of lipid bilayers. Biochim. Biophys. Acta. 1469 (3), 159–195.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Chiu S.W., Jakobsson E., Mashl R.J., Scott H.L. 2002. Cholesterol-induced modifications in lipid bilayers: A simulation study. Biophys. J. 83 (4), 1842–1853.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Hofsass C., Lindahl E., Edholm O. 2003. Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys. J. 84 (4), 2192–2206.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Kučerka N., Nieh M.-P., Katsaras J. 2011. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta. Biomembr. 1808 (11), 2761–2771.CrossRefGoogle Scholar
  27. 27.
    Pencer J., Nieh M.-P., Harroun T.A., Krueger S., Adams C., Katsaras J. 2005. Bilayer thickness and thermal response of dimyristoylphosphatidylcholine unilamellar vesicles containing cholesterol, ergosterol and lanosterol: A small-angle neutron scattering study. Biochim. Biophys. Acta. Biomembr. 1720 (1–2), 84–91.CrossRefGoogle Scholar
  28. 28.
    Kessel A., Ben-Tal N., May S. 2001. Interactions of cholesterol with lipid bilayers: the preferred configuration and fluctuations. Biophys. J. 81 (2), 643–658.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Albrecht O., Gruler H., Sackmann E. 1981. Pressure-composition phase diagrams of cholesterol/lecithin, cholesterol/phosphatidic acid, and lecithin/phosphatidic acid mixed monolayers: A Langmuir film balance study. J. Colloid Interface Sci. 79 (2), 319–338.CrossRefGoogle Scholar
  30. 30.
    Falck E., Patra M., Karttunen M., Hyvönen M.T., Vattulainen I. 2004. Lessons of slicing membranes: Interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys. J. 87 (2), 1076–1091.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Department for Theoretical Physics and Quantum TechnologiesNational University of Science and Technology “MISIS”MoscowRussia

Personalised recommendations