The study of oxygen reduction in photosystem I of higher plants using electron donors for this photosystem in intact thylakoids

  • M. A. Kozuleva
  • D. V. Vetoshkina
  • A. A. Petrova
  • M. M. Borisova-Mubarakshina
  • B. N. Ivanov
Articles
  • 84 Downloads

Abstract

Oxygen uptake in the light was investigated in suspensions of isolated pea thylakoids upon inhibition of electron transport from photosystem II by diuron and delivery of electrons to photosystem I by means of artificial donors in the presence of ascorbate. The effects of ascorbate and donors on the process of the reduction of O2 molecules by the components of acceptor side of photosystem I was analyzed. It was shown that DCPIP cannot be used as the donor for photosystem I in the study of this process. Apparently, TMPD applied as a donor does not affect immediately the reaction of the O2 reduction, since an increase in its concentration did not lead to an increase in the oxygen uptake rate in the light. In the experiments with TMPD, an increase in light intensity led to an increase in the oxygen uptake rate, and this fact was interpreted as a consequence of the increase in the apparent rate constant of the reaction of the O2 reduction by the components of the acceptor side of photosystem I.

Keywords

photosynthesis chloroplast thylakoids oxygen reduction photosystem I 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canvin D., Berry J.A., Badger M.R., Fock H., Osmond C.B. 1980. Oxygen exchange in leaves in the light. Plant Physiol. 66, 302–307.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Robinson J.M. 1988. Does O2 photoreduction occur within chloroplasts in vivo? Physiol. Plantarum. 72, 666–680.CrossRefGoogle Scholar
  3. 3.
    Ivanov B., Kozuleva M., Mubarakshina M. 2012. Oxygen metabolism in chloroplast. In: Cell metabolism–cell homeostasis and stress response. P. Babulya, Ed. InTech, Croatia, p. 39–72.Google Scholar
  4. 4.
    Ivanov B.N., Khorobrykh S.A., Kozuleva M.A., Borisova-Mubarakshina M.M. 2014. The roles of oxygen and its reactive species in photosynthesis. In: Sovremennye problemy fotosinteza (Contemporary problems of photosynthesis). Allakhverdiev S.I., Rubin A.B., Shuvalov V.A., Eds. Institute of Computer Science, Izhevsk-Moscow, p. 407–460.Google Scholar
  5. 5.
    Mehler A.H. 1951. Studies on reactivity of illuminated chloroplasts. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. Biophys. 33, 65–77.PubMedCrossRefGoogle Scholar
  6. 6.
    Radmer R., Ollinger O. 1980. Light-driven uptake of oxygen, carbon dioxide, and bicarbonate by the green alga Scenedesmus. Plant Physiol. 65, 723–729.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Takahashi M., Asada K. 1988 Superoxide production in aprotic interior of chloroplast thylakoids. Arch. Biochem. Biophys. 267, 714–722.PubMedCrossRefGoogle Scholar
  8. 8.
    Khorobrykh S.A., Ivanov B.N. 2002. Oxygen reduction in a plastoquinone pool of isolated pea thylakoids. Photosynthesis Res. 71, 209–219.CrossRefGoogle Scholar
  9. 9.
    Pospíil P. 2012. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta. 1817, 218–231.CrossRefGoogle Scholar
  10. 10.
    Asada K., Nakano Y. 1978. Affinity for oxygen in photoreduction of molecular oxygen and scavenging of hydrogen peroxide in spinach chloroplasts. Photochem. Photobiol. 28, 917–920.CrossRefGoogle Scholar
  11. 11.
    Takahashi M., Asada K. 1982. Dependence of oxygen affinity for Mehler reaction on photochemical activity of chloroplast thylakoids. Plant Cell Physiol. 23, 1457–1461.Google Scholar
  12. 12.
    Neumann J., Drechsler Z. 1984. Photoreduction of ferredoxin with various electron donors: support of the Z scheme of photosynthetic electron transport. Proc. Natl. Acad. Sci. USA. 81, 2070–2074.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lichtenthaler H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Meth. Enzymol. 148, 350–382.CrossRefGoogle Scholar
  14. 14.
    Gotoh N., Niki E. 1992. Rates of interactions of superoxide with vitamin E, vitamin C and related compounds as measured by chemiluminescence. Biochim. Biophys. Acta. 1115, 201–207.PubMedCrossRefGoogle Scholar
  15. 15.
    Hiyama T., Ke B. 1971. A new photosynthetic pigment, “P430”: Its possible role as the primary electron acceptor of photosystem I. Proc. Natl. Acad. Sci. USA. 68, 1010–1013.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Allen J.F. 1975. A two-step mechanism for the photosynthetic reduction of oxygen by ferredoxin. Biochem. Biophys. Res. 66, 36–43.CrossRefGoogle Scholar
  17. 17.
    Ivanov B.N., Red’ko T.P., Shmeleva V.L., Mukhin E.N. 1980. Role of ferredoxin in pseudo-cyclic electron transport in isolated pea chloroplasts. Biokhimiya (Rus). 45, 1425–1432.Google Scholar
  18. 18.
    Farrington J.A., Ebert M., Land E.J., Fletcher K. 1973. Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the reaction of paraquat radical with oxygen. Implications for the mode of action of bipyridyl herbicides. Biochim. Biophys. Acta. 314, 372–381.PubMedCrossRefGoogle Scholar
  19. 19.
    Buettner G.R., Schafer F.Q. 2004. Ascorbate (Vitamin C) as an antioxidant. In: Vitamin C: Functions and biochemistry in animals and plants. Asard H., May J., Smirnoff N., Eds. Oxon: Garland Science/BIOS Scientific Publ., p. 173–188.Google Scholar
  20. 20.
    Ivanov B.N. 2000. The competition between methyl viologen and monodehydroascorbate radical as electron acceptors in spinach thylakoids and intact chloroplasts. Free Rad. Res. 33, 217–227.CrossRefGoogle Scholar
  21. 21.
    Miyake C., Asada K. 1996. Inactivation mechanism of ascorbate peroxidase at low concentration of ascorbate: Hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol. 41, 335–343.CrossRefGoogle Scholar
  22. 22.
    Bielski B.H.J. 1982. Chemistry of ascorbic acid radical. In: Ascorbic acid: Chemistry, metabolism and uses. Seib P.A., Tolbert B.H., Eds. Amer. Chem. Soc., p. 81–100.CrossRefGoogle Scholar
  23. 23.
    Warden J.T. Jr, Bolton J.R. 1974. Flash photolysis-electron spin resonance studies of the dyna mics of photosystem I in green-plant photosynthesis. I. Effects of acceptors and donors in subchloroplast particles. Photochem. Photobiol. 20, 251–262.CrossRefGoogle Scholar
  24. 24.
    Bulychev A.A., van Voorthuysen T., Vredenberg W.J. 1996. Transmembrane movements of artificial redox mediators in relation to electron transport and ionic currents in chloroplasts. Physiol. Plant. 98, 605–611.CrossRefGoogle Scholar
  25. 25.
    Marchanka A., van Gastel M. 2012. Reversed freeze quench method near the solvent phase transition. Physical Chem. 116, 3899–3906.CrossRefGoogle Scholar
  26. 26.
    Eaton K. 2002. A novel colorimetric oxygen sensor: Dye redox chemistry in a thin polymer film. Sensors and Actuators B: Chemical. 85 (1), 42–51.CrossRefGoogle Scholar
  27. 27.
    Boucher N., Carpentier R. 1993. Heat-stress stimulation of oxygen uptake by photosystem 1 involves the reduction of superoxide radicals by specific electron donors. Photosynthesis Res. 35, 213–218.CrossRefGoogle Scholar
  28. 28.
    Opanasenko V.K., Naydov I.A., Vasyukhina L.A. 2014. Mechanosensitive pores in the thylakoid membranes of chloroplasts. Biol. membrany (Rus). 31, 168–176.Google Scholar
  29. 29.
    Kozuleva M., Klenina I., Proskuryakov I., Kirilyuk I., Ivanov B. 2011. Production of superoxide in chloroplast thylakoid membranes: ESR study with cyclic hydroxylamines of different lipophilicity. FEBS Lett. 585, 1067–1071.PubMedCrossRefGoogle Scholar
  30. 30.
    Borisova (Mubarakshina) M.M., Kozuleva M.A., Rudenko N.N., Naydov I.A., Klenina I.B., Ivanov B.N. 2012. Photosynthetic electron flow to oxygen and diffusion of hydrogen peroxide through the chloroplast envelope via aquaporins. Biochim. Biophys. Acta. 1817, 1314–1321.CrossRefGoogle Scholar
  31. 31.
    Kozuleva M.A., Petrova A.A., Mamedov M.D., Semenov A.Yu., Ivanov B.N. 2014. O2 reduction by photosystem I involves phylloquinone under steadystate illumination. FEBS Lett. 588, 4364–4368.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. A. Kozuleva
    • 1
  • D. V. Vetoshkina
    • 1
  • A. A. Petrova
    • 2
  • M. M. Borisova-Mubarakshina
    • 1
  • B. N. Ivanov
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchinoRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyMoscow Lomonosov State UniversityMoscowRussia

Personalised recommendations