Identification of TREK-2 K+ channels in human mesenchymal stromal cells

  • M. V. Tarasov
  • P. D. Kotova
  • O. A. Rogachevskaja
  • V. Yu. Sysoeva
  • S. S. Kolesnikov


The maintenance of pluripotency of mesenchymal stromal cells (MSCs), their proliferation and initiation of differentiation may critically depend on functional expression of ion channels. Despite such a possibility, mechanisms of electrogenesis in MSCs remain poorly understood. In particular, little is known about a variety of ion channels active in resting MSCs or activated upon MSC stimulation. Here we aimed at uncovering ion channels operating in MSCs, including those being active at rest, using the patch clamp technique and inhibitory analysis. In trying to evaluate a contribution of anion channels in MSC resting potential, we employed a number of diverse inhibitors of anion channels and transporters, including niflumic acid (NFA). Basically, NFA caused hyperpolarization of MSCs that was accompanied by a marked increase in ion conductance of their plasma membranes. The blockage of Cl channels could not underlie such a NFA effect, given that cells dialyzed with a CsCl solution were weakly or negligibly sensitive to this blocker. This and other findings indicated that NFA affected the MSC ion permeability not by targeting Cl channels but by stimulating K+ channels. NFA-activated K+ current was TEA and diltiazem blockable, and K+ channels involved were potentiated from outside by solution acidification and Cu2+ ions. Taken together, the data obtained implicated two-pore domain K+ channels of the TREK-2 subtype in mediating stimulatory effects of NFA on MSCs. The notable inference from our work is that TREK-2 channels should be expressed and functional virtually in every MSC, given that all cells examined by us (n > 100) similarly responded to NFA by increasing their TREK-2-like K+ conductance.


mesenchymal stromal cells niflumic acid TREK-2 K+ channels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kalinina N.I., Sysoeva V.Yu., Rubina K.A., Parfenova Ye.V., Tkachuk V.A. 2011. Mesenchymal stem cells in tissue growth and repair. Acta Naturae. 3 (4), 30–37.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Baer P.C., Geiger H. 2012. Adipose-derived mesenchymal stromal/stem cells: Tissue localization, characterization, and heterogeneity. Stem Cells Intern. 2012, 812693. doi:10.1155/2012/812693CrossRefGoogle Scholar
  3. 3.
    Blackiston D.J., McLaughlin K.A., Levin M. 2009. Bioelectric controls of cell proliferation: Ion channels, membrane voltage and the cell cycle. Cell Cycle. 8, 3519–3528.PubMedCentralCrossRefGoogle Scholar
  4. 4.
    Darszon A., Nishigaki T., Beltran C., Trevino C.L. 2011. Calcium channels in the development, maturation, and function of spermatozoa. Physiol. Rev. 91, 1305–1355.PubMedCrossRefGoogle Scholar
  5. 5.
    Becchetti A. 2011. Ion channels and transporters in cancer. I. Ion channels and cell proliferation in cancer. Am. J. Physiol. Cell Physiol. 301, C255–C265.PubMedCrossRefGoogle Scholar
  6. 6.
    Levite M., Cahalon L., Peretz A., Hershkoviz R., Sobko A., Ariel A., Desai R., Attali B., Lider O. 2000. Extracellular K+ and opening of voltage-gated potassium channels activate T cell integrin function: Physical and functional association between Kv1.3 channels and β1 integrins. J. Exp. Medicine. 191, 1167–1176.CrossRefGoogle Scholar
  7. 7.
    Cherubini A., Hofmann G., Pillozzi S., Guasti L., Crociani O., Cilia E., Di Stefano P., Degani S., Balzi M., Olivotto M., Wanke E., Becchetti A., Defilippi P., Wymore R., Arcangeli A. 2005. Human ethera-go-go-related gene 1 channels are physically linked to β1 integrins and modulate adhesion-dependent signaling. Mol. Biol. Cell. 16, 2972–2983.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Wei J.F., Wei L., Zhou X., Lu Z.Y., Francis K., Hu X.Y., Liu Y., Xiong W.C., Zhang X., Banik N.L., Zheng S.S., Yu S.P. 2008. Formation of Kv2.1-FAK complex as a mechanism of FAK activation, cell polarization and enhanced motility. J. Cell. Physiol. 217, 544–557.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Pillozzi S., Brizzi M.F., Bernabei P.A., Bartolozzi B., Caporale R., Basile V., Boddi V., Pegoraro L., Becchetti A., Arcangeli A. 2007. VEGFR-1 (FLT-1), β1 integrin, and hERG K+ channel for a macromolecular signaling complex in acute myeloid leukemia: Role in cell migration and clinical outcome. Blood. 110, 1238–1250.PubMedCrossRefGoogle Scholar
  10. 10.
    Heubach J.F., Graf E.M., Leutheuser J., Bock M., Balana B., Zahanich I., Christ T., Boxberger S., Wettwer E., Ravens U. 2003. Electrophysiological properties of human mesenchymal stem cells. J. Physiol. 554 (3), 659–672.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Li G.-R., Sun H., Deng X., Lau C.-P. 2005. Characterization of ionic currents in human mesenchymal stem cells from bone marrow. Stem Cells. 23, 371–382.PubMedCrossRefGoogle Scholar
  12. 12.
    Li G.-R., Deng X.-L. 2011. Functional ion channels in stem cells. World J. Stem Cells. 26, 19–24.CrossRefGoogle Scholar
  13. 13.
    Horwitz E.M., Le Blanc K., Dominici M., Mueller I., Slaper-Cortenbach I., Marini F.C., Deans R.J., Krause D.S, Keating A. 2005. Clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy. 7, 393–395.PubMedCrossRefGoogle Scholar
  14. 14.
    Kotova P.D., Turin-Kuzmin P.A., Rogachevskaya O.A., Fadeeva Yu.I., Sysoeva V.Yu., Tkachuk V.A., Kolesnikov S.S. 2013. Calcium-induced calcium release mediates all-or-nothing responses of mesenchymal stromal cells to noradrenaline. Biol.membranes (Rus.). 30, 422–429.Google Scholar
  15. 15.
    Kolesnikov S.S., Margolskee R.F. 1998. Extracellular K+ activates a K+- and H+-permeable conductance in frog taste cells. J. Physiol. 507, 415–432.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Enyedi P., Czirjak G. 2010. Molecular background of leak K+ currents: Two-pore domain potassium channels. Physiol. Rev. 90, 559–605.PubMedCrossRefGoogle Scholar
  17. 17.
    Funabashi K., Fujii M., Yamamura H., Ohya S., Imaizumi Y. 2010. Contribution of chloride channel conductance to the regulation of resting membrane potential in chondrocytes. J. Pharmacol. Sci. 113, 94–99.PubMedCrossRefGoogle Scholar
  18. 18.
    Pierno S., Camerino G.M., Cippone V., Rolland J.F., Desaphy J.F., De Luca A., Liantonio A., Bianco G., Kunic J.D., George A.L. Jr., Conte Camerino D. 2009. Statins and fenofibrate affect skeletal muscle chloride conductance in rats by differently impairing ClC-1 channel regulation and expression. Br. J. Pharmacol. 156, 1206–1215.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Dwyer L., Rhee P.L., Lowe V., Zheng H., Peri L., Ro S., Sanders K.M., Koh S.D. 2011. Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle. Am. J. Physiol. Gastr. Liver Physiol. 301, 287–296.Google Scholar
  20. 20.
    Leech C.A., Habener J.F. 1998. A role for Ca2+-sensitive nonselective cation channels in regulating the membrane potential of pancreatic β-cells. Diabetes. 47, 1066–1073.PubMedCrossRefGoogle Scholar
  21. 21.
    Ren D. 2011. Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron. 72, 899–911.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Liantonio A., Giannuzzi V., Picollo A., Babini E., Pusch M., Conte Camerino D. 2007. Niflumic acid inhibits chloride conductance of rat skeletal muscle by directly inhibiting the CLC-1 channel and by increasing intracellular calcium. Br. J. Pharmacol. 150, 235–247.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Zifarelli G., Liantonio A., Gradogna A., Picollo A., Gramegna G., De Bellis M., Murgia A.R., Babini E., Camerino D.C., Pusch M. 2010. Identification of sites responsible for the potentiating effect of niflumic acid on ClC-Ka kidney chloride channels. Br. J. Pharmacol. 160, 1652–1661.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Hu H., Tian J., Zhu Y., Wang C., Xiao R., Herz J.M., Wood J.D., Zhu M.X. 2010. Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflügers Arch. 459, 579–592.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Walker R.L., Koh S.D., Sergeant G.P., Sanders K.M., Horowitz B. 2002. TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal. Am. J. Physiol. Cell Physiol. 283, 1637–1645.CrossRefGoogle Scholar
  26. 26.
    Takahira M., Sakurai M., Sakurada N., Sugiyama K. 2005. Fenamates and diltiazem modulate lipid-sensitive mechano-gated 2P domain K+ channels. Pflügers Arch. 451, 474–478.PubMedCrossRefGoogle Scholar
  27. 27.
    Guinamard R., Simard C., Del Negro C. 2013. Flufenamic acid as an ion channel modulator. Pharmacol. Therap. 138, 272–284.CrossRefGoogle Scholar
  28. 28.
    Sandoz G., Douguet D., Chatelain F., Lazdunski M., Lesage F. 2009. Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Proc. Natl. Acad. Sci. USA. 106, 14628–14633.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Gruss M., Mathie A., Lieb W.R., Franks N.P. 2004. The two-pore-domain K+ channels TREK-1 and TASK-3 are differentially modulated by copper and zinc. Mol. Pharmacol. 66, 530–537.PubMedGoogle Scholar
  30. 30.
    Deng H., Hu H., Fang Y. 2012. Multiple tyrosine metabolites are GPR35 agonists. Sci. Reports. 2(373), 1–12.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. V. Tarasov
    • 1
  • P. D. Kotova
    • 1
  • O. A. Rogachevskaja
    • 1
  • V. Yu. Sysoeva
    • 2
  • S. S. Kolesnikov
    • 1
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow oblastRussia
  2. 2.Department of Biochemistry and Molecular Medicine, Faculty of Basic MedicineMoscow Lomonosov State UniversityMoscowRussia

Personalised recommendations