Intracellular blockade of GABAA receptors in the rat hippocampal neurons

  • I. Khalilov
  • X. Leinekugel
  • M. Mukhtarov
  • R. Khazipov


The intracellular blockade of GABAA-receptor-mediated currents is a useful approach to suppress the GABAergic conductance in a single cell and to isolate the glutamatergic component of network-driven activities. Previously an approach has been described allowing intracellular blockade of GABAA receptors by means of intracellular dialysis of a neuron with the pipette-filling solution, in which fluoride ions that hardly pass through the GABAA receptor channels substitute for Cl and in which Mg2+ and ATP are omitted to induce rundown of the GABAA receptors during whole-cell patch-clamp recordings. However, the kinetics of suppression of GABAergic conductance and the effect on the currents mediated by glutamate receptors remain unknown. Here, using whole-cell recordings with fluoride-based, Mg2+- and ATP-free solution on CA3 hippocampal neurons of neonatal rats, we show that after 1 h of such dialysis, both spontaneous and evoked GABAA-receptor-mediated synaptic currents and responses induced by the GABAA receptor agonist isoguvacine were completely suppressed. Inward GABAergic postsynaptic currents were suppressed prior to outward currents. Synaptic responses mediated by AMPA receptors were not affected by the dialysis, whereas the NMDA-receptor-mediated postsynaptic currents were reduced by approximately 20%. Dialysis with fluoride-based Mg2+, ATP-free solution either fully blocked giant depolarizing potentials (GDPs) in CA3 pyramidal cells (n = 2) or reduced the charge crossing the membrane during GDPs and shifted the GDP reversal potential to more positive values (n = 5). The dialysis-resistant component of GDPs was mediated by glutamate receptors, since: (i) it reversed around 0 mV; (ii) it demonstrated a negative slope conductance at negative membrane voltages, which is characteristic of NMDA receptor-mediated responses; (iii) kinetics of the individual events composing the dialysis-resistant component of GDPs at negative voltages were very similar to those of AMPA receptor-mediated synaptic currents. Thus, this procedure can be useful to isolate the glutamate receptor-mediated component of neuronal network-driven activities.


GABA receptor hippocampus glutamate AMPA receptor NMDA receptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buzsaki G. 2006. Rhythms of the brain. Oxford University Press.CrossRefGoogle Scholar
  2. 2.
    Davies C.H., Davies S.N., Collingridge G.L. 1990. Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J. Physiol. (Lond). 424, 513–531.Google Scholar
  3. 3.
    Khazipov R., Congar P., Ben-Ari Y. 1995. Hippocampal CA1 lacunosum-moleculare interneurons: Modulation of monosynaptic GABAergic IPSCs by presynaptic GABAB receptors. J. Neurophysiol. 74, 2126–2137.PubMedGoogle Scholar
  4. 4.
    Crepel V., Khazipov R., Ben-Ari Y. 1997. Blocking GABAA inhibition reveals AMPA- and NMDA-receptor-mediated polysynaptic responses in the CA1 region of the rat hippocampus. J. Neurophysiol. 77, 2071–2082.PubMedGoogle Scholar
  5. 5.
    Miles R. Wong R.K.S. 1987. Inhibitory control of local excitatory circuits in the guinea pig hippocampus. J. Physiol. (Lond.). 388, 611–629.Google Scholar
  6. 6.
    Hasenstaub A., Shu Y., Haider B., Kraushaar U., Duque A., McCormick D.A. 2005. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron. 47, 423–435.PubMedCrossRefGoogle Scholar
  7. 7.
    Khazipov R., Esclapez M., Caillard O., Bernard C., Khalilov I., Tyzio R., Hirsch J., Dzhala V., Berger B., Ben-Ari Y. 2001. Early development of neuronal activity in the primate hippocampus in utero. J. Neurosci. 21, 9770–9781.PubMedGoogle Scholar
  8. 8.
    Daw M.I., Ashby M.C., Isaac J.T. 2007. Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex. Nat. Neurosci. 102, 453–461.Google Scholar
  9. 9.
    Atallah B.V., Scanziani M. 2009. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron. 62, 566–577.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Minlebaev M., Colonnese M., Tsintsadze T., Sirota A., Khazipov R. 2011. Early gamma oscillations synchronize developing thalamus and cortex. Science. 334, 226–229.PubMedCrossRefGoogle Scholar
  11. 11.
    Khirug S., Huttu K., Ludwig A., Smirnov S., Voipio J., Rivera C., Kaila K., Khiroug L. 2005. Distinct properties of functional KCC2 expression in immature mouse hippocampal neurons in culture and in acute slices. Eur. J. Neurosci. 21, 899–904.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen G., Trombley P.Q., van den Pol A.N. 1996. Excitatory actions of GABA in developing rat hypothalamic neurones. J. Physiol. (Lond.). 494, 451–464.Google Scholar
  13. 13.
    Bormann J., Hamill O.P., Sakmann B. 1987. Mechanisms of anion permeation through channels gated by glycine and g-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. (Lond.). 385, 243–286.Google Scholar
  14. 14.
    Chen Q.X., Stelzer A., Kay A.R., Wong R.K.S. 1990. GABAA receptor function is regulated by phosphorylation in acutely dissociated guinea-pig hippocampal neurones. J. Physiol. (Lond.). 420, 207–221.Google Scholar
  15. 15.
    Nelson S., Toth L., Sheth B., Sur M. 1994. Orientation selectivity of cortical neurons during intracellular blockade of inhibition. Science. 265, 774–777.PubMedCrossRefGoogle Scholar
  16. 16.
    Khazipov R., Leinekugel X., Khalilov I., Gaïarsa J.-L., Ben-Ari Y. 1997. Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices. J. Physiol. (Lond.). 498, 763–772.Google Scholar
  17. 17.
    Leinekugel X., Medina I., Khalilov I., Ben-Ari Y., Khazipov R. 1997. Ca2+ oscillations mediated by the synergistic excitatory actions of GABAA and NMDA receptors in the neonatal hippocampus. Neuron. 18, 243–255.PubMedCrossRefGoogle Scholar
  18. 18.
    Bolea S., Avignone E., Berretta N., Sanchez-Andres J.V., Cherubini E. 1999. Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. J. Neurophysiol. 81, 2095–2102.PubMedGoogle Scholar
  19. 19.
    Fujiwara-Tsukamoto Y., Isomura Y., Nambu A., Takada M. 2003. Excitatory GABA input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells. Neuroscience. 119, 265–275.PubMedCrossRefGoogle Scholar
  20. 20.
    Smirnov S., Paalasmaa P., Uusisaari M., Voipio J., Kaila K. 1999. Pharmacological isolation of the synaptic and nonsynaptic components of the GABA-mediated biphasic response in rat CA1 hippocampal pyramidal cells. J. Neurosci. 19, 9252–9260.PubMedGoogle Scholar
  21. 21.
    Hamill O.P., Marty A., Neher E., Sakmann B., Sigworth F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cell-free membrane patches. Pfluegers Archiv. 391, 85–100.PubMedCrossRefGoogle Scholar
  22. 22.
    Nathan T., Jensen M.S., Lambert J.D.C. 1990. The slow inhibitory postsynaptic potential in rat hippocampus neurones is blocked by intracellular injection of QX314. Neurosci. Lett. 110, 313.CrossRefGoogle Scholar
  23. 23.
    Khazipov R., Congar P., Ben-Ari Y. 1995. Hippocampal CA1 lacunosum-moleculare interneurons: Comparison of effects of anoxia on excitatory and inhibitory postsynaptic currents. J. Neurophysiol. 74, 2138–2149.PubMedGoogle Scholar
  24. 24.
    Valeeva G., Abdullin A., Tyzio R., Skorinkin A., Nikolski E., Ben-Ari Y., Khazipov R. 2010. Temporal coding at the immature depolarizing GABAergic synapse. Front. Cell Neurosci. 4.Google Scholar
  25. 25.
    Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. 1984. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 307, 462–465.PubMedCrossRefGoogle Scholar
  26. 26.
    Khazipov R., Ragozzino D., Bregestovski P. 1995. Kinetics and Mg2+ block of N-methyl-D-aspartate receptor channels during postnatal development of hippocampal CA3 pyramidal neurons. Neuroscience. 69, 1057–1065.PubMedCrossRefGoogle Scholar
  27. 27.
    Traynelis S.F., Wollmuth L.P., McBain C.J., Menniti F.S., Vance K.M., Ogden K.K., Hansen K.B., Yuan H., Myers S.J., Dingledine R. 2010. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 62, 405–496.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Ben-Ari Y., Cherubini E., Corradetti R., Gaïarsa J.-L. 1989. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. (Lond.). 416, 303–325.Google Scholar
  29. 29.
    Lamsa K., Palva J.M., Ruusuvuori E., Kaila K., Taira T. 2000. Synaptic GABAA activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus. J. Neurophysiol. 83, 359–366.PubMedGoogle Scholar
  30. 30.
    Stelzer A., Kay A.R., Wong R.K.S. 1988. GABAA-receptor function in hippocampal cells is maintained by phosphorylation factors. Science. 241, 339–341.PubMedCrossRefGoogle Scholar
  31. 31.
    Whittington M.A., Traub R.D., Jefferys J.G.R. 1995. Erosion of inhibition contributes to the progression of low magnesium bursts in rat hippocampal slices. J. Physiol. (Lond.). 486, 723–734.Google Scholar
  32. 32.
    MacDonald J.F., Mody I., Salter M.W. 1989. Regulation of N-methyl-D-aspartate receptors revealed by intracellular dialysis of murine neurones in culture. J. Physiol. (Lond.). 414, 17–34.Google Scholar
  33. 33.
    Sather W., Dieudonne S., MacDonald J.F., Ascher P. 1992. Activation and desensitization of N-metyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones. J. Physiol. (Lond.). 450, 643–672.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. Khalilov
    • 1
    • 2
    • 3
  • X. Leinekugel
    • 4
  • M. Mukhtarov
    • 1
  • R. Khazipov
    • 1
    • 2
    • 3
  1. 1.Laboratory of Neurobiology, IFMBKazan Federal UniversityKazanRussia
  2. 2.INMED-Inserm U901Marseille Cedex 09France
  3. 3.Université de la Mèditerranée, UMR S901MarseilleFrance
  4. 4.IMN, CNRS UMR 5293Université Bordeaux 1, Bat B2TalenceFrance

Personalised recommendations