Responses of crayfish neurons and glial cells to photodynamic impact: Intracellular signaling, ultrastructural changes, and neuroglial interactions

  • A. B. Uzdensky
  • M. V. Rudkovskii
  • G. M. Fedorenko
  • E. V. Berezhnaya
  • I. A. Ischenko
  • V. D. Kovaleva
  • M. A. Komandirov
  • M. A. Neginskaya
  • A. M. Khaitin
  • S. A. Sharifulina


Photodynamic therapy (PDT), an inducer of oxidative stress, is used for treatment of cancer, including brain tumors. To study the mechanisms of photodynamic injury of neurons and glial cells (GC), we used a simple model object — isolated crayfish mechanoreceptor consisting of a single sensory neuron surrounded by a multilayered glial envelope. PDT caused inhibition and elimination of neuronal activity, impairment of intracellular organelles involved in the biosynthetic, bioenergetic, and transport processes and neuroglial interactions, necrosis of neurons and glial cells, and in glial apoptosis. PDT-induced death of a neuron and GC was mediated by intercellular molecular messengers and intracellular signaling cascades. PDT-induced inhibition and elimination of neuronal activity was associated with opening of mitochondrial permeability transition pores, Ca2+ release into cytosol, protein kinase C and NO synthase activities. Necrosis of neurons was mediated by protein kinases B/Akt, GSK-3β and mTOR, opening of mitochondrial permeability transition pores and Ca2+/calmodulin/CaMKII pathway. NO and GDNF reduced neuronal necrosis. Multiple signal pathways, such as phospholipase C/Ca2+, Ca2+/calmodulin/CaMKII, Ca2+/PKC, Akt/mTOR, MEK/p38, and protein kinase G mediated PDT-induced necrosis both in glial cells and in neurons. NOS/NO and neurotrophic factors NGF and GDNF protected glial cells and demonstrated antinecrotic activity. Glial apoptosis was reduced by neurotrophic factors NGF and GDNF, protein kinase C, and MAP kinase JNK. In contrast, mitochondrial permeability transition pores and phospholipase C, which mobilize intracellular Ca2+, NOS/NO/protein kinase G, proteins GSK-3β and mTOR, stimulated apoptosis of glial cells. The schemes of involvement of various inter- and intracellular signaling processes in the responses of neurons and GC to PDT are developed.


neuron glia intracellular signaling necrosis apoptosis neurotrophic factors neuroglial interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Uzdensky A.B. 2010. Manageable necrosis. Biol. Membrany (Rus.). 27(1), 1–11.Google Scholar
  2. 2.
    Kopp D.M., Trachtenberg J.T., Thompson W.J. 1997. Glial growth factor rescues Schwann cells of mechanoreceptors from denervation-induced apoptosis. J. Neurosci. 17, 6697–6706.PubMedGoogle Scholar
  3. 3.
    Kolosov M., Uzdensky A. 2006. Crayfish mechanoreceptor neuron prevents photoinduced apoptosis of satellite glial cells. Brain Res. Bull. 69, 495–500.PubMedCrossRefGoogle Scholar
  4. 4.
    Brown S.B., Brown E.A., Walker I. 2004. The present and future role of photodynamic therapy in cancer treatment. Lancet. Oncology. 5, 497–508.PubMedCrossRefGoogle Scholar
  5. 5.
    Uzdensky A.B. 2010. Kletochno-molekulyarnye mekhanizmy fotodinamicheskoi terapii (Cellular and molecular mechanisms of photodynamic therapy). St. Petersburg, Nauka.Google Scholar
  6. 6.
    Stylli S.S., Kaye A.H. 2006. Photodynamic therapy of cerebral glioma — a review. Part I. A biological basis. J. Clin. Neurosci. 13, 615–625.PubMedCrossRefGoogle Scholar
  7. 7.
    Kostron H. 2010. Photodynamic diagnosis and therapy and the brain. In: Meth. Mol. Biol. Ed. Gomer C.J. Berlin: Springer Sci. Business media. 635, 261–280.CrossRefGoogle Scholar
  8. 8.
    Fedorenko G.M., Uzdensky A.B. 2009. Cellular structures involved in the transport processes and neuroglial interactions in the crayfish stretch receptor. Cell Tissue Res. 337, 477–490.PubMedCrossRefGoogle Scholar
  9. 9.
    Fedorenko G.M., Uzdensky A.B. 2009. Cellular structures involved in the transport processes and neuroglial interactions in the crayfish stretch receptor. J. Integr. Neurosci. 8, 433–440.PubMedCrossRefGoogle Scholar
  10. 10.
    Fedorenko G.M., Uzdensky A.B. 2010. Nissl substance and cellular structures involved in the intraneuronal and neuroglial transport in the crayfish stretch receptor. In: Microscopy: Science, technology, applications and education. Eds Mendez-Vilas A., Diaz J. Badajoz: Formatex Res. Ctr., p. 299–306.Google Scholar
  11. 11.
    Uzdensky A.B., Zhavoronkova A.A., Mironov A.F., Kuzmin S.G. 2000. Study of the photodynamic activity of novel photosensibilizers on an isolated nerve cell. Izv. RAN. Ser. Biol. (Rus.). 2, 230–238.Google Scholar
  12. 12.
    Uzdensky A.B., Mironov A.F. 1999. Photodynamic in activation of the single crayfish nerve cell: Dynamics of electrophysiological responses and comparison of photosensitizers. Lasers Med. Sci. 14, 185–195.CrossRefGoogle Scholar
  13. 13.
    Uzdensky A.B., Bragin D.E., Kolosov M.S., Dergacheva O.Yu., Fedorenko G.M., Zhavoronkova A.A. 2002. Photodynamic inactivation of isolated crayfish mechanoreceptor neuron: Different death modes under different photosensitizer concentrations. Photochem. Photobiol. 76, 431–437.PubMedCrossRefGoogle Scholar
  14. 14.
    Uzdensky A., Kolosov M., Bragin D., Dergacheva O., Vanzha O., Oparina L. 2005. Involvement of adenylate cyclase and tyrosine kinase signaling pathways in response of crayfish stretch receptor neuron and satellite glia cell to photodynamic treatment. Glia. 49, 339–348.PubMedCrossRefGoogle Scholar
  15. 15.
    Benn S.C., Woolf C.J. 2004. Adult neuron survival strategies — slamming on the brakes. Nat. Rev. Neurosci. 5, 686–700.PubMedCrossRefGoogle Scholar
  16. 16.
    Fedorenko G.M., Uzdensky A.B. 2008. Dynamics of ultrastructural changes in the isolated crayfish mechanoreceptor neuron under photodynamic impact. J. Neurosci. Res. 86, 1409–1416.PubMedCrossRefGoogle Scholar
  17. 17.
    Fedorenko G.M., Fedorenko Y.P., Fedorenko A.G., Uzdensky A.B. 2011. Dynamics of ultrastructural alterations in photosensitized crayfish glial and neuronal cells: Structures involved in transport processes and neuroglial interactions. J. Neurosci. Res. 89, 341–351.PubMedCrossRefGoogle Scholar
  18. 18.
    Uzdensky A., Lobanov A., Bibov M., Petin Y. 2007. Involvement of Ca2+ and cyclic adenosine monophosphate-mediated signaling pathways in photodynamic injury of isolated crayfish neuron and satellite glial cells. J. Neurosci. Res. 85, 860–870.PubMedCrossRefGoogle Scholar
  19. 19.
    Lobanov A.V., Uzdensky A.B. 2009. Protection of crayfish glial cells but not neurons from photodynamic in jury by nerve growth factor. J. Mol. Neurosci. 39, 308–319.PubMedCrossRefGoogle Scholar
  20. 20.
    Lobanov A.V., Uzdensky A.B. 2007. Neurotrophin NGF protects glial cells, but not neurons, of stretch receptor of the crayfish Astacus astacus from photooxidative stress. J. Evol. Biochem. Physiol. 43, 533–535.CrossRefGoogle Scholar
  21. 21.
    Komandirov M.A., Knyazeva E.A., Fedorenko Y.P., Rudkovskii M.V., Stetsurin D.A., Uzdensky A.B. 2011. On the role of phosphatidylinositol 3-kinase, protein kinase B/Akt, and glycogen synthase kinase3β in photodynamic injury of crayfish neurons and glial cells. J. Mol. Neurosci. 45, 229–235.PubMedCrossRefGoogle Scholar
  22. 22.
    Uzdensky A., Komandirov M., Fedorenko G., Lobanov A. 2013. Protection effect of GDNF and neurturin on photosensitized crayfish neurons and glial cells. J. Mol. Neurosci. 49, 480–490.PubMedCrossRefGoogle Scholar
  23. 23.
    Kovaleva V.D., Berezhnaya E.V., Komandirov M.A., Rudkovskii M.V., Uzdensky A.B. 2013. Involvement of nitric oxide in photodynamic injury of neurons and glial cells. Nitric Oxide. 29, 46–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Reichardt L.F. 2006. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. B. Biol. Sci. 361, 1545–1564.CrossRefGoogle Scholar
  25. 25.
    Airaksinen M.S., Sarma M. 2002. The GDNF family: Signaling, biological functions and therapeutical value. Nat. Rev. Neurosci. 3, 383–394.PubMedCrossRefGoogle Scholar
  26. 26.
    Gomperts B.D., Kramer I.M., Tatham P.E.R. 2009. Signal transduction. Amsterdam etc.: Elsevier Inc.Google Scholar
  27. 27.
    Duronio V. 2008. The life of a cell: Apoptosis regulation by the PI3K/PKB pathway. Biochem. J. 415, 333–344.PubMedCrossRefGoogle Scholar
  28. 28.
    Los M., Maddika S., Erb B., Schulze-Osthoff K. 2009. Switching Akt: From survival signaling to deadly response. Bioessays. 31, 492–495.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Guertin D.A.; Sabatini D.M. 2007. Defining the role of mTOR in cancer. Cancer Cell. 12, 9–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Trump B.F., Berezesky I.K. 1992. The role of cytosolic calcium in cell injury, necrosis and apoptosis. Curr. Opin. Cell Biol. 4, 227–232.PubMedCrossRefGoogle Scholar
  31. 31.
    Uzdensky A.B., Zhavoronkova A.A., Dergacheva O.Y. 2000. Firing inhibition processes in the response dynamics of isolated crayfish nerve cell to the photodynamic effect of sulphonated aluminum phthalocyanine: participation of free radicals and Ca2+. Lasers Med. Sci. 15, 123–130.CrossRefGoogle Scholar
  32. 32.
    Colbran R.J. 2004. Targeting of calcium/calmodulin dependent protein kinase II. Biochem. J. 378, 1–16.PubMedCrossRefGoogle Scholar
  33. 33.
    Newton A.C., Johnson J.E. 1998. Protein kinase C: A paradigm for regulation of protein function by two membrane-targeting modules. Biochim. Biophys. Acta. 1376, 155–172.PubMedCrossRefGoogle Scholar
  34. 34.
    Bragin D.E., Kolosov M.S., Uzdensky A.B. 2003. Photodynamic inactivation of isolated crayfish neuron requires protein kinase C, PI3-kinase and Ca2+. J. Photochem. Photobiol. B: Biol. 70, 99–105.CrossRefGoogle Scholar
  35. 35.
    Moan J. 1990. On the diffusion length of singlet oxygen in cells and tissues. J. Photochem. Photobiol. B. Biol. 6, 343–347.CrossRefGoogle Scholar
  36. 36.
    Ben-Hur E., Dubbelmann T.M.A.R., van Steveninck J. 1991. Phthalocyanine-induced photodynamic changes of cytoplasmic free calcium in Chinese hamster cells. Photochem. Photobiol. 54, 163–166.PubMedCrossRefGoogle Scholar
  37. 37.
    Ruck A., Heckelsmiller K., Kaufmann R., Grossman N., Haseroth E., Akgun N. 2000. Light-induced apoptosis involves a defined sequence of cytoplasmic and nuclear calcium release in AlPcS4-photosensitized rat bladder RR 1022 epithelial cells. Photochem. Photobiol. 72, 210–216.PubMedCrossRefGoogle Scholar
  38. 38.
    Kondo M., Kasai M. 1974. Photodynamic inactivation of sarcoplasmic reticulum vesicule membranes by xanthene dyes. Photochem. Photobiol. 19, 35–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Stocker M., Hirzel K., D’hoedt D., Pedarzani P. 2004. Matching molecules to function: Neuronal Ca2+ activated K+ channels and afterhyperpolarizations. Toxicon. 43, 933–949.PubMedCrossRefGoogle Scholar
  40. 40.
    Dirnagl U., Iadecola C., Moskowitz M.A. 1999. Pathology of ischaemic stroke: An integrated view. Trends Neurosci. 22, 391–397.PubMedCrossRefGoogle Scholar
  41. 41.
    Hidalgo A., Learte A.R., McQuilton P., Pennack J., Zhu B. 2006. Neurotrophic and gliatrophic contexts in Drosophila. Brain Behav. Evol. 68, 173–180.PubMedCrossRefGoogle Scholar
  42. 42.
    Jarro H., Beck G., Conticello S.G., Fainzilber M. 2001. Evolving better brains: A need for neurotrophins? TiNS. 24, 79–85.Google Scholar
  43. 43.
    McKay S., Purcell A.L., Carew T.J. 1999. Regulation of synaptic function by neurotrophic factors in vertebrates and invertebrates: Implications for development and learning. Learn. Memory. 6, 193–215.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. B. Uzdensky
    • 1
  • M. V. Rudkovskii
    • 1
  • G. M. Fedorenko
    • 1
  • E. V. Berezhnaya
    • 1
  • I. A. Ischenko
    • 1
  • V. D. Kovaleva
    • 1
  • M. A. Komandirov
    • 1
  • M. A. Neginskaya
    • 1
  • A. M. Khaitin
    • 1
  • S. A. Sharifulina
    • 1
  1. 1.Sothern Federal UniversityRostov-on-DonRussia

Personalised recommendations