Advertisement

Coupling of phospholipase C and PI3K/PTEN signaling pathways in Physarum polycephalum: The action of U73122 on motile and autooscillatory activity of plasmodium

Articles

Abstract

The possibility of tight coupling of phospholipase C with the signal pathway PI3K/ PTEN, a ubiquitous mechanism for the control of chemotaxis and cell shape in free-living amoebae and mammalian tissue cells, has been investigated in Physarum polycephalum plasmodium, a multinuclear amoeboid cell with the autooscillatory mode of motility. It was found that on the maintenance of contractile autooscillations and protoplasmic shuttle streaming, U73122, an inhibitor of the signal transduction to phospholipase C, induces degradation of the plasmodium frontal zone, decreases efficiency of locomotion and suppresses the chemotaxis toward glucose as well as the response of oscillator to this attractant. The identity of the effects of U73122 with those shown for wortmannin and LY294002, widely used PI3K inhibitors (Matveeva et al. 2008. Biophysics. 53, 533–538), suggests a tight coupling of the signal pathways of phospholipase C and PI3K/PTEN. U73122 increases the period of contractile oscillations and abolishes its cyclic changes attributed for the plasmodium migration. The results indicate that motile behavior of the plasmodium is under the receptor-mediated control.

Keywords

phospholipase C PI3K/PTEN signaling pathway autooscillations chemotaxis migration Physarum polycephalum plasmodium 

Abbreviations

PIP2

phosphatidylinositol-4,5-bisphosphate

PIP3

phosphatidylinositol-3,4,5-trisphosphate

IP3

inositol-1,4,5-trisphosphate

IP3R

inositol-1,4,5-trisphosphate receptor

PI3K

phosphoinositide-3-kinase

PTEN

phosphatidylinositol-3-phosphatase, tensin homolog

PLC

phospholipase C

PH-domain

plekstrin homology domain, a protein module first found in plekstrin

C2 domain

a protein module in PLC molecule

Gα, Gβγ

subunits of trimeric G-protein complex

U73122-1-[6-[[(17β)-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione

an aminosteroid and the inhibitor of receptor activation of PLC

LY294002

PI3K inhibitor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fleischer M., Wohlfarth-Bottermann K.E. 1975. Correlation between tension force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contraction of protoplasmic strands. Cytobiologie. 10, 339–365.Google Scholar
  2. 2.
    Teplov V.A. 2010. Cytomechanics of oscillatory contractions. Modeling the longitudinal dynamics of Physarum polycephalum protoplasmic strands. Biofizika (Rus.). 55(6), 987–995.Google Scholar
  3. 3.
    Kuroda R., Hatano S., Hiramoto Y., Kuroda H. 1988. Change of cytosolic Ca-ion concentration in the contraction and relaxation cycle of Physarum microplasmodia. Protoplasma. Suppl. 1, 72–80.CrossRefGoogle Scholar
  4. 4.
    Beylina S.I., Matveeva N.B., Teplov V.A. 1996. Autonomous motile activity of Physarum polycephalum plasmodium. Biofizika (Rus.). 41(1), 133–138.Google Scholar
  5. 5.
    Bliokh Zh.L., Smolyaninov V.V. 1977. Kinematics of protoplast spreading. II. Individual locomotive activity. Biofizika (Rus.). 22(4), 631–639.Google Scholar
  6. 6.
    Satoh H., Ueda T., Kobatake Y. 1985. Oscillations in cell shape and size during locomotion and in contractile activities of Physarum polycephalum, Dictyostelium discoideum, Amoeba proteus and macrophages. Exp. Cell Res. 156, 79–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Giannone G., Dubin-Thaler B.J., Dobereiner H-G., Kieffer N., Bresnick A.R., Sheetz M.P. 2004. Periodic lamellipodial contractions correlate with rearward actin waves. Cell. 116, 431–443.PubMedCrossRefGoogle Scholar
  8. 8.
    Devreotes P., Janetopoulos C. 2003. Eukaryotic chemotaxis: Distinctions between directional sensing and polarization. J. Biol. Chem. 278, 20445–20448.PubMedCrossRefGoogle Scholar
  9. 9.
    Kolsch V., Charest P.G., Firtel R.A. 2008. The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci. 121, 551–559.PubMedCrossRefGoogle Scholar
  10. 10.
    Iijima M., Devreotes P. 2002. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell. 109, 599–610.PubMedCrossRefGoogle Scholar
  11. 11.
    Matveeva N.B., Beylina S.I., Teplov V.A. 2008. Role of phosphoinositol-3-kinase in regulation of shape and directed motion of Physarum polycephalum plasmodium. Biofizika (Rus.). 53(6), 986–992.Google Scholar
  12. 12.
    Matveeva N.B., Teplov V.A., Beylina S.I. 2010. Suppression of the autooscillatory contractile activity of Physarum polycephalum plasmodium by the inhibitor of the IP3-induced Ca2+ release 2-aminoethoxydiphenyl borate. Biochemistry (Moscow). Suppl. Ser. A: Membrane and Cell Biology. 4(1), 70–76CrossRefGoogle Scholar
  13. 13.
    Liao H.-J., Carpenter G. 2004. Phospholipase C. In: Handbook of Cell Signaling. Eds Bradshaw R.A., Dennis E.A. London, Oxford, New York, San Diego: Acad. Press. V. 2, p. 5–9.Google Scholar
  14. 14.
    Camp W.G. 1936. A method of cultivating myxomycete plasmodia. Bull. Torrey Bot. Club. 63, 205–210.CrossRefGoogle Scholar
  15. 15.
    Wohlfarth-Botterman K.E., Stockem W. 1970. Die Regeneration des plasmalemmas von Physarum polycephalum. Wilhelm Roux’s Arch. Entwicklungsmech. Org. 164, 321–340.CrossRefGoogle Scholar
  16. 16.
    Ilyasov F.E., Morozov M.A., Teplov V.A. 2008. Cytomechanics of Oscillatory contractions. 1. Measurement of active mechanical properties of Physarum polycephalum plasmodium strands. 1. Biofizika (Rus.). 53(6), 1044–1050.Google Scholar
  17. 17.
    Matveeva N.B., Klyueva A.A., Teplov V.A., Beylina S.I. Effect of pharmacological activators and inhibitors of ryanodine receptor on autooscillatory contractile activity of Physarum polycephalum plasmodium. Biochemistry (Moscow). Suppl. Ser. A: Membrane and Cell Biology. 20(1), 66–71.Google Scholar
  18. 18.
    Rakoczy L. 1973. The myxomycete Physarum nudum as a model organism for photobiological studies. Ber. Deutsch. Bot. Ges. 86, 141–164.Google Scholar
  19. 19.
    Horowitz L.F., Hirdes W., Suh B.-Ch., Hildemann D.W., Mackie K., Hille B. 2005. Phospholipase C in living cells: Activation, inhibition, Ca2+ requirement, and regulation of M current. J. Gen. Physiol. 126, 243–262.PubMedCrossRefGoogle Scholar
  20. 20.
    Klein R.R., Bourdon D.M., Costales C.L., Wagner C.D., White W.L., Williams J.D., Hicks S.N., Sondek J., Thakker D.R. 2011. Direct activation of human phospholipase C by its well known inhibitor U73122. J. Biol. Chem. 286, 12407–12416.PubMedCrossRefGoogle Scholar
  21. 21.
    Beilina S.I., Matveeva N.B., Priezzhev A.V., Romanovskiy Yu.M., Sukhorukov A.P., Teplov V.A. 1984. Plasmodium of the myxomycete Physarum polycephalum as an autowave self-organizing system. In: Self-organization Autowaves and Structures Far from Equilibrium. Ed. Krinsky V.I. Berlin Heidelberg NY Tokyo: Springer-Verlag, p. 218–221.CrossRefGoogle Scholar
  22. 22.
    Welton R.M., Hoffman C.S. 2000. Glucose monitoring in fission yeast via the gpa2 G, the git5 Gα and the git3 putative glucose receptor. Genetics. 156, 513–521.PubMedGoogle Scholar
  23. 23.
    Nezvetskiy A.R., Orlova T.G., Beylina S.I., Orlov N.Ya. 2006. Thermostable extracellular cyclic nucleotide phosphodiesterase from Physarum polycephalum plasmodium. Biofizika (Rus.). 51(5), 810–816.Google Scholar
  24. 24.
    Matveeva N.B., Morozov M.A., Nezvetskiy A.R., Orlova T.G., Teplov V.A., Beylina S.I., 2010. Involvement of extracellular cAMP-specific phosphodiesterase in control of motile activity of Physarum polycephalum plasmodium. Biofizika (Rus.). 55.(6), 1076–1082.Google Scholar
  25. 25.
    Drayer A.L., Van der Kaay J., Mayr G.W., Van Haastert P.J. 1994. Role of phospholipase C in Dictyostelium: Formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. EMBO J. 13(7), 1601–1609.PubMedGoogle Scholar
  26. 26.
    Kortholt A., King J.S., Keizer-Gunnink I., Harwood A.J., Van Haastert P.J.M. 2007. Phospholipase C regulation of phosphatidylinositol 3,4,5-trisphosphate-mediated chemotaxis. Mol. Biol. Cell. 18, 4772–4779.PubMedCrossRefGoogle Scholar
  27. 27.
    Van Haastert P.J.M., Keizer-Gunnink I., Kortholt A. 2007. Essential role of PI3-kinase and phospholipase A2 in Dictyostelium discoideum chemotaxis. J. Cell Biol. 177(5), 809–816.PubMedCrossRefGoogle Scholar
  28. 28.
    Chen L., Iijima M., Tang M., Landree M.A., Huang Y.E., Xiong Y., Iglesias P.A., Devreotes P.N. 2007. PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev. Cell. 12, 603–614.PubMedCrossRefGoogle Scholar
  29. 29.
    Van Dijken P., Bergsma J.C., Van Haastert P.J.M. 1997. Phospholipase-C-independent inositol 1,4,5-trisphosphate formation in Dictyostelium cells. Activation of a plasma-membrane-bound phosphatase by receptorstimulated Ca2+ influx. Eur. J Biochem. 244(1), 113–119.PubMedCrossRefGoogle Scholar
  30. 30.
    Rebecchi M.J., Pentyala S.N. 2000. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291–1335.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. B. Matveeva
    • 1
  • V. A. Teplov
    • 1
  • S. I. Beylina
    • 1
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations