Advertisement

Store-operated calcium entry into SK-N-SH human neuroblastoma cells modeling huntington’s disease

  • V. A. Vigont
  • O. A. Zimina
  • L. N. Glushankova
  • I. B. Bezprozvanny
  • G. N. Mozhayeva
  • E. V. Kaznacheyeva
Articles

Abstract

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by expansion of polyglutamine at the N-terminus of the huntingtin protein. Striatal medium spiny neurons (MSN) are the primary targets of HD pathology. In our study, a cellular model of HD was based on the human neuroblastoma cells SK-N-SH transfected with plasmid for expression of the mutant huntingtin protein Htt138Q. Expression of Htt138Q increased store-dependent calcium entry into SK-N-SH cells. EVP4593 reversibly blocked the abnormal store-dependent response, probably generated by the channels incorporating TRPC1 ( transient receptor potential canonical 1) subunit.

Keywords

Huntington’s disease neurodegeneration calcium SOC TRPC1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vonsattel J.P., Myers R.H., Stevens T.J., Ferrante R.J., Bird E.D., Richardson E.P., Jr., 1985. Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 44(6), 559–577.PubMedCrossRefGoogle Scholar
  2. 2.
    Tang T.-Sh., Tu H., Chan Edmond Y.W., Maximov A., Wang Zh., Wellington Cheryl L., Hayden M.R., Bezprozvanny I. 2003. Huntingtin and Huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) trisphosphate receptor type 1. Neuron. 39(2), 227–239.PubMedCrossRefGoogle Scholar
  3. 3.
    Tang T.-Sh., Chen X., Liu J., Bezprozvanny I. 2007. Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease. J. Neurosci. 27(30), 7899–7910.PubMedCrossRefGoogle Scholar
  4. 4.
    Panov A.V., Gutekunst C.A., Leavitt B.R., Hayden M.R., Burke J.R., Strittmatter W.J., Greenamyre J.T. 2002. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat. Neurosci. 5(8), 731–736.PubMedGoogle Scholar
  5. 5.
    Choo Y.S., Johnson G.V., MacDonald M., Detloff P.J., Lesort M. 2004. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum. Mol. Genet. 13(14), 1407–1420.PubMedCrossRefGoogle Scholar
  6. 6.
    Bouron A., Altafaj X., Boisseau S., De Waard M. 2005. A store-operated Ca2+ influx activated in response to the depletion of thapsigargin-sensitive Ca2+ stores is developmentally regulated in embryonic cortical neurons from mice. Brain Res. Dev. Brain Res. 159(1), 64–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Tobe M., Isobe Y., Tomizawa H., Nagasaki T., Takahashi H., Fukazawa T., Hayashi H. 2003. Discovery of quinazolines as a novel structural class of potent inhibitors of NF-κB activation. Bioorg. Med. Chem. 11(3), 383–391.PubMedCrossRefGoogle Scholar
  8. 8.
    Tobe M., Isobe Y., Tomizawa H., Nagasaki T., Takahashi H., Hayashi H. 2003. A novel structural class of potent inhibitors of NF-κB activation: Structure-activity relationships and biological effects of 6-aminoquinazoline derivatives. Bioorg. Med. Chem. 11(18), 3869–3878.PubMedCrossRefGoogle Scholar
  9. 9.
    Hamill O.P., Sakmann B. 1981. Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature. 294(5840), 462–464.PubMedCrossRefGoogle Scholar
  10. 10.
    Okamura H., Rao A. 2001. Transcriptional regulation in lymphocytes. Curr. Opin. Cell Biol. 13(2), 239–243.PubMedCrossRefGoogle Scholar
  11. 11.
    Stankunas K., Graef I.A., Neilson J.R., Park S.H., Crabtree G.R. 1999. Signaling through calcium, calcineurin, and NF-AT in lymphocyte activation development. Cold Spring Harb. Symp. Quant. Biol. 64, 505–516.PubMedCrossRefGoogle Scholar
  12. 12.
    Clapham D.E. 2002 Sorting out MIC, TRP and CRAC ion channels. J. Gen. Physiol. 120(2), 217–220.PubMedGoogle Scholar
  13. 13.
    Wu X., Babnigg G., Villereal M.L. 2000. Functional significance of human TRP1 and TRP3 in store-operated Ca2+ entry in HEK-293 cells. Am. J. Physiol. Cell Physiol. 278(3), 526–536.Google Scholar
  14. 14.
    Ambudkar I.S., Ong H.L., Liu X., Bandyopadhyay B., Cheng K.T. 2007. TRPCl: The link between functionally distinct store-operated calcium channels. Cell Calcium. 42(2), 213–223.PubMedCrossRefGoogle Scholar
  15. 15.
    Salido G.M., Sage S.O., Rosado J.A. 2009. TRPC channels and store-operated Ca2+ entry. Biochem. Biophys. Acta. 1793(2), 223–230.PubMedCrossRefGoogle Scholar
  16. 16.
    Riccio A., Medhurst A.D., Mattei C., Kelsell R.E., Calver A.R., Randall A.D., Benham C.D., Pangalos M.N. 2002. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res. Mol. Brain Res. 109(1–2), 95–104.PubMedCrossRefGoogle Scholar
  17. 17.
    Zeron M.M., Hansson O., Chen N., Wellington C.L., Leavitt B.R., Brundin P., Hayden M.R., Raymond L.A. 2002. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron. 33(6), 849–860.PubMedCrossRefGoogle Scholar
  18. 18.
    Fan M.M., Fernandes H.B., Zhang L.Y., Hayden M.R., Raymond L.A. 2007. Altered NMDA receptor trafficking in a yeast artificial chromosome transgenic mouse model of Huntington’s disease. J. Neurosci. 27(14), 3768–3779.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang H., Li Q., Graham R.K., Slow E., Hayden M.R., Bezprozvanny I. 2008. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington’s disease. Neurobiol. Dis. 31(1), 80–88.PubMedCrossRefGoogle Scholar
  20. 20.
    Glushankova L.N., Zimina O.A., Vigont V.A., Mozhaeva G.N., Bezprozvanny I.B., Kaznacheeva E.V. Changes in the store-dependent calcium influx in a cellular model of Huntington’s disease. Dokl. Biol. Sci. 433(6), 1–4.Google Scholar
  21. 21.
    Khoshnan A., Ko J., Watkin E.E., Paige L.A., Reinhart P.H., Patterson P.H. 2004. Activation of the IκB kinase complex and nuclear factor-κB contributes to mutant huntingtin neurotoxicity. J. Neurosci. 24(37), 7999–8008.PubMedCrossRefGoogle Scholar
  22. 22.
    Qin Z.H., Wang Y., Nakai M., Chase T.N. 1998. Nuclear factor-κB contributes to excitotoxin-induced apoptosis in rat striatum. Mol. Pharmacol. 53(1), 33–42.PubMedGoogle Scholar
  23. 23.
    Nakai M., Qin Z.H., Chen J.F., Wang Y., Chase T.N. 2000. Kainic acid-induced apoptosis in rat striatum is associated with nuclear factor-κB activation. J. Neurochem. 74(2), 647–658.PubMedCrossRefGoogle Scholar
  24. 24.
    Qin Z.H., Wang Y., Chen R.W., Wang X., Ren M., Chuang D.M., Chase T.N. 2001. Prostaglandin A(1) protects striatal neurons against excitotoxic injury in rat striatum. J. Pharmacol. Exp. Ther. 297(1), 78–87.PubMedGoogle Scholar
  25. 25.
    Berna-Erro A., Braun A., Kraft R., Kleinschnitz C., Schuhmann M.K., Stegner D., Wultsch T., Eilers J., Meuth S.G., Stoll G., Nieswandt B. 2009. STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci. Signal. 2(93), ra67.PubMedCrossRefGoogle Scholar
  26. 26.
    Hasan G., Venkiteswaran G. 2010. The enigma of store-operated Ca-entry in neurons: answers from the Drosophila flight circuit. Front. Neural. Circuits. 4, 10.PubMedCrossRefGoogle Scholar
  27. 27.
    Gruszczynska-Biegala J., Pomorski P., Wisniewska M.B., Kuznicki J. 2011. Differential roles for STIM1 and STIM2 in store-operated calcium entry in rat neurons. PLOS One. 6(4), e19285.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamamoto S., Wajima T., Hara Y., Nishida M., Mori Y. 2007. Transient receptor potential channels in Alzheimer’s disease. Biochim. Biophys. Acta. 1772(8), 958–967.PubMedGoogle Scholar
  29. 29.
    Selvaraj S., Sun Y., Singh B.B. 2010. TRPC channels and their implication in neurological diseases. CNS Neurol. Disord. Drug Targets. 9(1), 94–104.PubMedCrossRefGoogle Scholar
  30. 30.
    Narayanan K.L., Irmady K., Subramaniam S., Unsicker K., von Bohlen und Halbach O. 2008. Evidence that TRPC1 is involved in hippocampal glutamate-induced cell death. Neurosci. Lett. 446(2-3), 117–122.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. A. Vigont
    • 1
  • O. A. Zimina
    • 1
  • L. N. Glushankova
    • 1
  • I. B. Bezprozvanny
    • 2
  • G. N. Mozhayeva
    • 1
  • E. V. Kaznacheyeva
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Department of PhysiologyUT Southwestern Medical Center at DallasDallasUSA

Personalised recommendations