Presynaptic receptors regulating the time course of neurotransmitter release from vertebrate nerve endings

  • D. V. Samigullin
  • V. F. Khuzakhmetova
  • A. N. Tsentsevitsky
  • E. A. Bukharaeva


A number of different types of presynaptic receptors was revealed in central and peripheral chemical synapses activated both by main mediator and co-mediators released simultaneously. Physiological significance and mechanisms of functioning of these receptors are not clear yet. They are assumed to provide negative or positive feedback decreasing or increasing the number of neurotransmitter quanta released in response to nerve impulse and thus regulating synaptic transmission. At the same time, there is one more way of secretion process modulation associated with the changes of timing of transmitter release. This mechanism was shown to contribute to the efficiency of synaptic transmission. The role of presynaptic receptors in regulation of the kinetics of quanta release is one of the interesting questions of modern neurophysiology. This paper overviews the results obtained by the authors that demonstrate the contribution of presynaptic receptors of different types into the regulation of temporal parameters of quantal secretion at the vertebrates neuromuscular junction. It was shown that activation of the cholinergic nicotinic receptors leads to a decrease of the amplitude of postsynaptic response not only due to reduction of the quantity of released quanta but also due to increased the level of asynchronous release. On the contrary, the facilitating effect of catecholamines on the neuromuscular synapse is the result of activation of presynaptic β1-adrenoreceptors which leads to greater synchronization of release process and, consequently, to the increase of the amplitude of the postsynaptic response. Presynaptic purine receptors, involved in the modulation the intensity of secretion, are also capable of alteration of the time course of secretion. Activation of ryanodine receptors results in the increase of the number of quanta released with prolonged latencies leading to appearance of the phase of delayed asynchronous neurotransmitter release.


synaptic transmission presynaptic receptors quantal release of neurotransmitter time course of quantal release 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Langer S.Z. 2008. Presynaptic autoreceptors regulating transmitter release. Neurochem. Int. 52(1–2), 26–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Miller R.J. 1998. Presynaptic receptors. Annu. Rev. Pharmacol. Toxicol. 38, 201–207.PubMedCrossRefGoogle Scholar
  3. 3.
    Burnstock G. 2007. Purine and pyrimidine receptors. Cell. Mol. Life Sci. 64, 1471–1483.PubMedCrossRefGoogle Scholar
  4. 4.
    Liu Q., Chen B., Yankova M., Morest D., Maryon E., Hand A., Nonet M., Wang Z-W. 2005. Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction. J. Neurosci. 25(29), 6745–6754.PubMedCrossRefGoogle Scholar
  5. 5.
    Van der Kloot W., Molgo J. 1994. Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol. Rev. 74(4), 899–991.PubMedGoogle Scholar
  6. 6.
    Bowman W., Prior C., Marshall I. 1990. Presynaptic receptors in the neuromuscular junction. Ann. NY. Acad. Sci. 604, 69–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Starke K. 1989. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol. Rev. 69, 864–989.PubMedGoogle Scholar
  8. 8.
    Parnas H., Segel L., Dudel J., Parnas I. 2000. Autoreceptors, membrane potential and regulation the transmitter release. Trends Neurosci. 23, 60–68.PubMedCrossRefGoogle Scholar
  9. 9.
    Miyamoto M. 1977. The actions of cholinergic drugs on motor nerve terminals. Pharmacol. Rev. 29(3), 221–247.PubMedGoogle Scholar
  10. 10.
    Ciani S., Edwards C. 1963. The effect of acetylcholine on neuromuscular transmission in the frog. J. Pharmacol. Exp. Therap. 142, 21–23.Google Scholar
  11. 11.
    Silinsky E.M., Redman R.S. 1996. Synchronous release of ATP and neurotransmitter within milliseconds of a motor nerve impulse in the frog. J. Physiol. 492, 815–822.PubMedGoogle Scholar
  12. 12.
    Giniatullin R.A., Sokolova E.M. 1998. ATP and adenosine inhibit transmitter release at the frog neuromuscular junction through distinct presynaptic receptors. Br. J. Pharmacol. 124, 839–844.PubMedCrossRefGoogle Scholar
  13. 13.
    Wessler J., Anschuetz S. 1988. β-Adrenoreceptor stimulation enhances transmitter output from the rat phrenic nerve. Br. J. Pharmacol. 94(3), 669–674.PubMedGoogle Scholar
  14. 14.
    Wessler I., Holzer G., Kanstler A. 1990. Stimulation of β1 adrenoreceptors enhances electrically evoked [3H]-acetylcholine release from rat phrenic nerve. Clin. Exp. Pharmacol. Physiol. 17, 23–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Slater C. 2008. Reliability of neuromuscular transmission and how it is maintained. Handb. Clin. Neurol. 91, 27–101.PubMedCrossRefGoogle Scholar
  16. 16.
    Lin J.-W., Faber S. 2002. Modulation of synaptic delay during synaptic plasticity. Trends Neurosci. 25, 449–455.PubMedCrossRefGoogle Scholar
  17. 17.
    Fesce R. 1999. The kinetics of nerve-evoked quantal secretion. Philos. Trans. R. Soc. London. B. Biol. Sci. 354, 319–329.PubMedCrossRefGoogle Scholar
  18. 18.
    Katz B., Miledi R. 1965. The measurement of synaptic delay and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. London. B. 161, 483–495.CrossRefGoogle Scholar
  19. 19.
    Barrett E.F., Stevens C.F. 1972. The kinetics of transmitter release at the frog neuromuscular junction. J. Physiol. 227, 691–708.PubMedGoogle Scholar
  20. 20.
    Sabatini B., Regehr W. 1999. Timing of synaptic transmission. Annu. Rev. Physiol. 61, 521–542.PubMedCrossRefGoogle Scholar
  21. 21.
    Soucek B. 1971. Influence of latency fluctuations and the quantal process of transmitter release on the endplate potential’s amplitude distribution. Biophys. J. 11, 127–139.PubMedCrossRefGoogle Scholar
  22. 22.
    Giniatullin R., Kheeroug L., Vyskocil F. 1995. Modelling endplate current: dependence on quantum secretion probability and postsynaptic miniature current parameters. Eur. Biophys. J. 23, 443–446.PubMedCrossRefGoogle Scholar
  23. 23.
    Gilmanov I., Samigullin D., Vyskocil F., Nikolsky E., Bukharaeva E. 2008. Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers. J. Comput. Neurosci. 25, 296–307.PubMedCrossRefGoogle Scholar
  24. 24.
    Van der Kloot W. 1988. Estimating the timing of quantal releases during end-plate currents at the frog neuromuscular junction. J. Physiol. 402, 595–603.PubMedGoogle Scholar
  25. 25.
    Aumann Y., Parnas H. 1991. Evaluation of the time course of neurotransmitter release from the measured psc and mpsc. Bull. Math. Biol. 53, 537–555.PubMedGoogle Scholar
  26. 26.
    Vorobieva O., Hackett J., Worden M., Bykhovskaia M. 1999. Evaluation of quantal neurosecretion from evoked and miniature postsynaptic responses by deconvolution method. J. Neurosci. Meth. 92, 91–99.CrossRefGoogle Scholar
  27. 27.
    Gainulov R., Bukharaeva E., Nikolsky E. 2002. A method for assessing the kinetics of evoked secretion of transmitter quanta determining the generation of multiquantum endplate currents. Neurosci. Behav. Physiol. 32, 613–616.PubMedCrossRefGoogle Scholar
  28. 28.
    Vizi E.S., Somogyi G.T. 1989. Prejunctional modulation of acetylcholine release from the skeletal neuromuscular junction: link between positive (nicotinic)and negative (muscarinic)-feedback modulation. Brit. J. Pharmacol. 97, 65–70.Google Scholar
  29. 29.
    Nikolsky E., Giniatullin R. 1979. Termination of the presynaptic effect of carbacholine by tubocurarine. Bull. Exper. Biol. Med. 87(2), 171–174.CrossRefGoogle Scholar
  30. 30.
    Katz B., Thesleff S. 1957. A study of the desensitization produced by acetylcholine at the motor end-plate. J. Physiol. 138, 63–80.PubMedGoogle Scholar
  31. 31.
    Matzner H., Parnas H., Parnas I. 1988. Presynaptic effects of d-tubocurarine on neurotransmitter release at the neuromuscular junction of the frog. J. Physiol. 398, 109–121.PubMedGoogle Scholar
  32. 32.
    Slutsky I., Parnas H., Parnas I. 1999. Presynaptic effects of muscarine on Ach release at the frog neuromuscular junction. J. Physiol. 514, 769–782.PubMedCrossRefGoogle Scholar
  33. 33.
    Slutsky I., Silman I., Parnas I., Parnas H. 2001. Presynaptic M2 muscarinic receptors are involved in controlling the kinetics of Ach release at the frog neuromuscular junction. J. Physiol. 536(3), 717–725.PubMedCrossRefGoogle Scholar
  34. 34.
    Santafe M.M., Salon I., Garcia N., Lanuza M.A., Uchitel O.D., Tomas J. 2003. Modulation of Ach release by presynaptic muscarinic auto-receptors in the neuromuscular junction from the newborn to the adult rat. Eur. J. Neurosci. 17, 1–9.CrossRefGoogle Scholar
  35. 35.
    Dudel J. 2007. The time course of transmitter release in mouse motor nerve terminals is differentially affected by activation of muscarinic M1 or M2 receptors. Eur. J. Neurosci. 26, 2160–2168.PubMedCrossRefGoogle Scholar
  36. 36.
    Nikolsky E., Samigullin D., Vyskocil F., Bukharaeva E., Magazanik L. 2004. Cholinergic regulation of the quantal release at frog neuromuscular junction. J. Physiol. 560, 77–88.PubMedCrossRefGoogle Scholar
  37. 37.
    Bukharaeva E., Nikolsky E. 2010. Changes in the kinetics of quanta secretion — effective mechanism os synaptic transmission modulation. Rossiiskii fiziol. zhurn. (Rus.). 96(8), 766–777.Google Scholar
  38. 38.
    Kovyazina I., Tsentsevitsky A., Nikolsky E., Bukharaeva E. 2010. Kinetics of acetylcholine quanta release at the neuromuscular junction during high-frequency nerve stimulation. Eur. J. Neurosci. 32, 1480–1489.PubMedCrossRefGoogle Scholar
  39. 39.
    Kuba K., Tomita T. 1971. Noradrenaline action on nerve terminal in the rat diaphragm. J. Physiol. 217, 19–31.PubMedGoogle Scholar
  40. 40.
    Yawo H. 1996. Noradrenaline modulates transmitter release by enhancing the Ca2+ sensitivity of exocytosis in the chick ciliary presynaptic terminal. J. Physiol. 493, 385–391.PubMedGoogle Scholar
  41. 41.
    Kuba K. 1970. Effects of catecholamines on the neuromuscular junction in the rat diaphragm. J. Physiol. 211, 551–570.PubMedGoogle Scholar
  42. 42.
    Vizi S. 1991. Evidence that catecholamines increase acetylcholine release from neuromuscular junction through stimulation of alpha-1 adrenoreceptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 343, 435–438.CrossRefGoogle Scholar
  43. 43.
    Orbeli L.A. 1923. Die sympatetische Innervation der Skelettmuskeln. Bull. Inst. Sci. Leshaft. 6, 194–197.Google Scholar
  44. 44.
    Melichar I., Brozek G., Jansky L., Vyskocil F. 1973. Effect of hibernation and noradrenaline on acetylcholine release and action at neuromuscular junction of golden hamster (Mesocricetus auratus). Pflugers Arch. 345, 107–122.PubMedCrossRefGoogle Scholar
  45. 45.
    Bukharaeva E.A., Nikolsky E.E., Kim K.Kh., Moravec J., Vyskocil F. 1999. Noradrenaline synchronizes evoked quantal release at frog neuromuscular junction. J. Physiol. 517(3), 879–888.CrossRefGoogle Scholar
  46. 46.
    Bukharaeva E.A., Nikolsky E.E., Kim K.Kh., Gainulov R.Kh., Vyskocil F. 1998. Catecholamines change the time course of the evoked quanta mediator release via β-adrenoreceptors. J. Neurochemistry. 71, S49B.Google Scholar
  47. 47.
    Silinsky E.M. 2004. Adenosine decreases both presynaptic calcium currents and neurotransmitter release at the mouse neuromuscular junction. J. Physiol. 558, 389–401.PubMedCrossRefGoogle Scholar
  48. 48.
    Todd K., Robitaille R. 2006. Purinergic modulation of synaptic signaling at the neuromuscular junction. Pflugers Arch.-Eur. J. Physiol. 452, 608–614.CrossRefGoogle Scholar
  49. 49.
    Tsentsevitsky A., Nikolsky E., Giniatullin R., Bukharaeva E. 2011. Opposite modulation of time course of quantal release in two parts of the same synapse by reactive oxygen species. Neuroscience. 189, 93–99.PubMedCrossRefGoogle Scholar
  50. 50.
    Rahamimoff R., Yaari Y. 1973. Delayed release of transmitter at the frog neuromuscular junction. J. Physiol. 228, 241–257.PubMedGoogle Scholar
  51. 51.
    Atluri P., Regehr W. 1998. Delayed release of neurotransmitter from cerebellar granule cells. J. Neurosci. 18, 8214–8227.PubMedGoogle Scholar
  52. 52.
    Hagler D.J., Goda Y. 2001. Properties of synchronous and asynchronous release during pulse train depression in cultured hippocampal neurons. J. Neurophysiol. 85, 2324–2334.PubMedGoogle Scholar
  53. 53.
    Yoshihara M., Guan Z., Littleton T. 2010. Differential regulation of synchronous versus asynchronous neurotransmitter release by the C2 domains of synaptotagmin 1. Proc. Natl. Acad. Sci. USA. 107(33), 14869–14874.PubMedCrossRefGoogle Scholar
  54. 54.
    Otsu Y., Shahrezaei V., Li B., Raymond L., Delaney K., Murphy T. 2004. Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses. J. Neurosci. 24, 420–433.PubMedCrossRefGoogle Scholar
  55. 55.
    Hestrin S., Galarreta M. 2005. Synchronous versus asynchronous transmitter release: a tale of two types of inhibitory neurons. Nat. Neurosci. 8, 1283–1284.PubMedCrossRefGoogle Scholar
  56. 56.
    Iremonger K.J., Bains J.S. 2007. Integration of asynchronously released quanta prolongs the postsynaptic spike window. J. Neurosci. 27(25), 6684–6691.PubMedCrossRefGoogle Scholar
  57. 57.
    Manseau F., Marinelli S., Meńdez P., Schwaller B., Prince D., Huguenard J., Bacci A. 2010. Desynchronization of neocortical networks by asynchronous release of GABA at autaptic and synaptic contacts from fastspiking interneurons. PLoS Biol. 2010 Sep 28;8(9). pii: e1000492.Google Scholar
  58. 58.
    Lu T., Trussell L. 2000. Inhibitory transmission mediated by asynchronous transmitter release. Neuron. 26, 683–694.PubMedCrossRefGoogle Scholar
  59. 59.
    Chen C., Regehr W. 1999. Contributions of residual calcium to fast synaptic transmission. J. Neurosci. 19, 6257–6266.PubMedGoogle Scholar
  60. 60.
    Balezina O.P. 2002. Role of intracellular calcium stores in nerve endings in regulation of neurotransmission secretion. Usp. Fiziol. Nauk (Rus.). 33(3), 38–56.Google Scholar
  61. 61.
    Bouchard R., Pattarini R., Geiger J.D. 2003. Presence and functional significance of presynaptic ryanodine receptors. Progr. Neurobiol. 69(6), 391–418.CrossRefGoogle Scholar
  62. 62.
    Narita K., Akita T., Osanai M., Shirasaki T., Kijima H., Kuba K. 1998. A Ca2+-induced Ca2+ release mechanism involved in asynchronous exocytosis at frog motor nerve terminals. J. Gen. Physiol. 112, 593–609.PubMedCrossRefGoogle Scholar
  63. 63.
    Narita K., Akita T., Hachisuka J., Huang S.-M., Ochi K., Kuba K. 1989. Functional coupling of Ca2+ channels to ryanodine receptors at presynaptic terminals. J. Gen. Physiol. 115, 519–532.CrossRefGoogle Scholar
  64. 64.
    Bukharaeva E.A., Samigullin D., Nikolsky E.E., Magazanik L.G. 2007. Modulation of the kinetics of evoked quantal release at mouse neuromuscular junctions by calcium and strontium. J. Neurochem. 100, 939–949.PubMedCrossRefGoogle Scholar
  65. 65.
    Bukharaeva E., Samigullin D., Nikolsky E., Vyskocil F. 2002. Protein kinase A cascade regulates quantal release dispersion at frog muscle endplate. J. Physiol. 538, 837–848.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • D. V. Samigullin
    • 1
  • V. F. Khuzakhmetova
    • 1
  • A. N. Tsentsevitsky
    • 1
  • E. A. Bukharaeva
    • 1
    • 2
  1. 1.Kazan Institute of Biochemistry and BiophysicsRussian Academy of SciencesKazanRussia
  2. 2.Kazan State Medical UniversityKazanRussia

Personalised recommendations