Skip to main content
Log in

Presynaptic receptors regulating the time course of neurotransmitter release from vertebrate nerve endings

  • Reviews
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

A number of different types of presynaptic receptors was revealed in central and peripheral chemical synapses activated both by main mediator and co-mediators released simultaneously. Physiological significance and mechanisms of functioning of these receptors are not clear yet. They are assumed to provide negative or positive feedback decreasing or increasing the number of neurotransmitter quanta released in response to nerve impulse and thus regulating synaptic transmission. At the same time, there is one more way of secretion process modulation associated with the changes of timing of transmitter release. This mechanism was shown to contribute to the efficiency of synaptic transmission. The role of presynaptic receptors in regulation of the kinetics of quanta release is one of the interesting questions of modern neurophysiology. This paper overviews the results obtained by the authors that demonstrate the contribution of presynaptic receptors of different types into the regulation of temporal parameters of quantal secretion at the vertebrates neuromuscular junction. It was shown that activation of the cholinergic nicotinic receptors leads to a decrease of the amplitude of postsynaptic response not only due to reduction of the quantity of released quanta but also due to increased the level of asynchronous release. On the contrary, the facilitating effect of catecholamines on the neuromuscular synapse is the result of activation of presynaptic β1-adrenoreceptors which leads to greater synchronization of release process and, consequently, to the increase of the amplitude of the postsynaptic response. Presynaptic purine receptors, involved in the modulation the intensity of secretion, are also capable of alteration of the time course of secretion. Activation of ryanodine receptors results in the increase of the number of quanta released with prolonged latencies leading to appearance of the phase of delayed asynchronous neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer S.Z. 2008. Presynaptic autoreceptors regulating transmitter release. Neurochem. Int. 52(1–2), 26–30.

    Article  PubMed  CAS  Google Scholar 

  2. Miller R.J. 1998. Presynaptic receptors. Annu. Rev. Pharmacol. Toxicol. 38, 201–207.

    Article  PubMed  CAS  Google Scholar 

  3. Burnstock G. 2007. Purine and pyrimidine receptors. Cell. Mol. Life Sci. 64, 1471–1483.

    Article  PubMed  CAS  Google Scholar 

  4. Liu Q., Chen B., Yankova M., Morest D., Maryon E., Hand A., Nonet M., Wang Z-W. 2005. Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction. J. Neurosci. 25(29), 6745–6754.

    Article  PubMed  CAS  Google Scholar 

  5. Van der Kloot W., Molgo J. 1994. Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol. Rev. 74(4), 899–991.

    PubMed  Google Scholar 

  6. Bowman W., Prior C., Marshall I. 1990. Presynaptic receptors in the neuromuscular junction. Ann. NY. Acad. Sci. 604, 69–81.

    Article  PubMed  CAS  Google Scholar 

  7. Starke K. 1989. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol. Rev. 69, 864–989.

    PubMed  CAS  Google Scholar 

  8. Parnas H., Segel L., Dudel J., Parnas I. 2000. Autoreceptors, membrane potential and regulation the transmitter release. Trends Neurosci. 23, 60–68.

    Article  PubMed  CAS  Google Scholar 

  9. Miyamoto M. 1977. The actions of cholinergic drugs on motor nerve terminals. Pharmacol. Rev. 29(3), 221–247.

    PubMed  CAS  Google Scholar 

  10. Ciani S., Edwards C. 1963. The effect of acetylcholine on neuromuscular transmission in the frog. J. Pharmacol. Exp. Therap. 142, 21–23.

    CAS  Google Scholar 

  11. Silinsky E.M., Redman R.S. 1996. Synchronous release of ATP and neurotransmitter within milliseconds of a motor nerve impulse in the frog. J. Physiol. 492, 815–822.

    PubMed  CAS  Google Scholar 

  12. Giniatullin R.A., Sokolova E.M. 1998. ATP and adenosine inhibit transmitter release at the frog neuromuscular junction through distinct presynaptic receptors. Br. J. Pharmacol. 124, 839–844.

    Article  PubMed  CAS  Google Scholar 

  13. Wessler J., Anschuetz S. 1988. β-Adrenoreceptor stimulation enhances transmitter output from the rat phrenic nerve. Br. J. Pharmacol. 94(3), 669–674.

    PubMed  CAS  Google Scholar 

  14. Wessler I., Holzer G., Kanstler A. 1990. Stimulation of β1 adrenoreceptors enhances electrically evoked [3H]-acetylcholine release from rat phrenic nerve. Clin. Exp. Pharmacol. Physiol. 17, 23–32.

    Article  PubMed  CAS  Google Scholar 

  15. Slater C. 2008. Reliability of neuromuscular transmission and how it is maintained. Handb. Clin. Neurol. 91, 27–101.

    Article  PubMed  Google Scholar 

  16. Lin J.-W., Faber S. 2002. Modulation of synaptic delay during synaptic plasticity. Trends Neurosci. 25, 449–455.

    Article  PubMed  CAS  Google Scholar 

  17. Fesce R. 1999. The kinetics of nerve-evoked quantal secretion. Philos. Trans. R. Soc. London. B. Biol. Sci. 354, 319–329.

    Article  PubMed  CAS  Google Scholar 

  18. Katz B., Miledi R. 1965. The measurement of synaptic delay and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. London. B. 161, 483–495.

    Article  CAS  Google Scholar 

  19. Barrett E.F., Stevens C.F. 1972. The kinetics of transmitter release at the frog neuromuscular junction. J. Physiol. 227, 691–708.

    PubMed  CAS  Google Scholar 

  20. Sabatini B., Regehr W. 1999. Timing of synaptic transmission. Annu. Rev. Physiol. 61, 521–542.

    Article  PubMed  CAS  Google Scholar 

  21. Soucek B. 1971. Influence of latency fluctuations and the quantal process of transmitter release on the endplate potential’s amplitude distribution. Biophys. J. 11, 127–139.

    Article  PubMed  CAS  Google Scholar 

  22. Giniatullin R., Kheeroug L., Vyskocil F. 1995. Modelling endplate current: dependence on quantum secretion probability and postsynaptic miniature current parameters. Eur. Biophys. J. 23, 443–446.

    Article  PubMed  CAS  Google Scholar 

  23. Gilmanov I., Samigullin D., Vyskocil F., Nikolsky E., Bukharaeva E. 2008. Modeling of quantal neurotransmitter release kinetics in the presence of fixed and mobile calcium buffers. J. Comput. Neurosci. 25, 296–307.

    Article  PubMed  Google Scholar 

  24. Van der Kloot W. 1988. Estimating the timing of quantal releases during end-plate currents at the frog neuromuscular junction. J. Physiol. 402, 595–603.

    PubMed  Google Scholar 

  25. Aumann Y., Parnas H. 1991. Evaluation of the time course of neurotransmitter release from the measured psc and mpsc. Bull. Math. Biol. 53, 537–555.

    PubMed  CAS  Google Scholar 

  26. Vorobieva O., Hackett J., Worden M., Bykhovskaia M. 1999. Evaluation of quantal neurosecretion from evoked and miniature postsynaptic responses by deconvolution method. J. Neurosci. Meth. 92, 91–99.

    Article  CAS  Google Scholar 

  27. Gainulov R., Bukharaeva E., Nikolsky E. 2002. A method for assessing the kinetics of evoked secretion of transmitter quanta determining the generation of multiquantum endplate currents. Neurosci. Behav. Physiol. 32, 613–616.

    Article  PubMed  Google Scholar 

  28. Vizi E.S., Somogyi G.T. 1989. Prejunctional modulation of acetylcholine release from the skeletal neuromuscular junction: link between positive (nicotinic)and negative (muscarinic)-feedback modulation. Brit. J. Pharmacol. 97, 65–70.

    CAS  Google Scholar 

  29. Nikolsky E., Giniatullin R. 1979. Termination of the presynaptic effect of carbacholine by tubocurarine. Bull. Exper. Biol. Med. 87(2), 171–174.

    Article  Google Scholar 

  30. Katz B., Thesleff S. 1957. A study of the desensitization produced by acetylcholine at the motor end-plate. J. Physiol. 138, 63–80.

    PubMed  CAS  Google Scholar 

  31. Matzner H., Parnas H., Parnas I. 1988. Presynaptic effects of d-tubocurarine on neurotransmitter release at the neuromuscular junction of the frog. J. Physiol. 398, 109–121.

    PubMed  CAS  Google Scholar 

  32. Slutsky I., Parnas H., Parnas I. 1999. Presynaptic effects of muscarine on Ach release at the frog neuromuscular junction. J. Physiol. 514, 769–782.

    Article  PubMed  CAS  Google Scholar 

  33. Slutsky I., Silman I., Parnas I., Parnas H. 2001. Presynaptic M2 muscarinic receptors are involved in controlling the kinetics of Ach release at the frog neuromuscular junction. J. Physiol. 536(3), 717–725.

    Article  PubMed  CAS  Google Scholar 

  34. Santafe M.M., Salon I., Garcia N., Lanuza M.A., Uchitel O.D., Tomas J. 2003. Modulation of Ach release by presynaptic muscarinic auto-receptors in the neuromuscular junction from the newborn to the adult rat. Eur. J. Neurosci. 17, 1–9.

    Article  Google Scholar 

  35. Dudel J. 2007. The time course of transmitter release in mouse motor nerve terminals is differentially affected by activation of muscarinic M1 or M2 receptors. Eur. J. Neurosci. 26, 2160–2168.

    Article  PubMed  CAS  Google Scholar 

  36. Nikolsky E., Samigullin D., Vyskocil F., Bukharaeva E., Magazanik L. 2004. Cholinergic regulation of the quantal release at frog neuromuscular junction. J. Physiol. 560, 77–88.

    Article  PubMed  CAS  Google Scholar 

  37. Bukharaeva E., Nikolsky E. 2010. Changes in the kinetics of quanta secretion — effective mechanism os synaptic transmission modulation. Rossiiskii fiziol. zhurn. (Rus.). 96(8), 766–777.

    Google Scholar 

  38. Kovyazina I., Tsentsevitsky A., Nikolsky E., Bukharaeva E. 2010. Kinetics of acetylcholine quanta release at the neuromuscular junction during high-frequency nerve stimulation. Eur. J. Neurosci. 32, 1480–1489.

    Article  PubMed  Google Scholar 

  39. Kuba K., Tomita T. 1971. Noradrenaline action on nerve terminal in the rat diaphragm. J. Physiol. 217, 19–31.

    PubMed  CAS  Google Scholar 

  40. Yawo H. 1996. Noradrenaline modulates transmitter release by enhancing the Ca2+ sensitivity of exocytosis in the chick ciliary presynaptic terminal. J. Physiol. 493, 385–391.

    PubMed  CAS  Google Scholar 

  41. Kuba K. 1970. Effects of catecholamines on the neuromuscular junction in the rat diaphragm. J. Physiol. 211, 551–570.

    PubMed  CAS  Google Scholar 

  42. Vizi S. 1991. Evidence that catecholamines increase acetylcholine release from neuromuscular junction through stimulation of alpha-1 adrenoreceptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 343, 435–438.

    Article  CAS  Google Scholar 

  43. Orbeli L.A. 1923. Die sympatetische Innervation der Skelettmuskeln. Bull. Inst. Sci. Leshaft. 6, 194–197.

    Google Scholar 

  44. Melichar I., Brozek G., Jansky L., Vyskocil F. 1973. Effect of hibernation and noradrenaline on acetylcholine release and action at neuromuscular junction of golden hamster (Mesocricetus auratus). Pflugers Arch. 345, 107–122.

    Article  PubMed  CAS  Google Scholar 

  45. Bukharaeva E.A., Nikolsky E.E., Kim K.Kh., Moravec J., Vyskocil F. 1999. Noradrenaline synchronizes evoked quantal release at frog neuromuscular junction. J. Physiol. 517(3), 879–888.

    Article  Google Scholar 

  46. Bukharaeva E.A., Nikolsky E.E., Kim K.Kh., Gainulov R.Kh., Vyskocil F. 1998. Catecholamines change the time course of the evoked quanta mediator release via β-adrenoreceptors. J. Neurochemistry. 71, S49B.

    Google Scholar 

  47. Silinsky E.M. 2004. Adenosine decreases both presynaptic calcium currents and neurotransmitter release at the mouse neuromuscular junction. J. Physiol. 558, 389–401.

    Article  PubMed  CAS  Google Scholar 

  48. Todd K., Robitaille R. 2006. Purinergic modulation of synaptic signaling at the neuromuscular junction. Pflugers Arch.-Eur. J. Physiol. 452, 608–614.

    Article  CAS  Google Scholar 

  49. Tsentsevitsky A., Nikolsky E., Giniatullin R., Bukharaeva E. 2011. Opposite modulation of time course of quantal release in two parts of the same synapse by reactive oxygen species. Neuroscience. 189, 93–99.

    Article  PubMed  CAS  Google Scholar 

  50. Rahamimoff R., Yaari Y. 1973. Delayed release of transmitter at the frog neuromuscular junction. J. Physiol. 228, 241–257.

    PubMed  CAS  Google Scholar 

  51. Atluri P., Regehr W. 1998. Delayed release of neurotransmitter from cerebellar granule cells. J. Neurosci. 18, 8214–8227.

    PubMed  CAS  Google Scholar 

  52. Hagler D.J., Goda Y. 2001. Properties of synchronous and asynchronous release during pulse train depression in cultured hippocampal neurons. J. Neurophysiol. 85, 2324–2334.

    PubMed  CAS  Google Scholar 

  53. Yoshihara M., Guan Z., Littleton T. 2010. Differential regulation of synchronous versus asynchronous neurotransmitter release by the C2 domains of synaptotagmin 1. Proc. Natl. Acad. Sci. USA. 107(33), 14869–14874.

    Article  PubMed  CAS  Google Scholar 

  54. Otsu Y., Shahrezaei V., Li B., Raymond L., Delaney K., Murphy T. 2004. Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses. J. Neurosci. 24, 420–433.

    Article  PubMed  CAS  Google Scholar 

  55. Hestrin S., Galarreta M. 2005. Synchronous versus asynchronous transmitter release: a tale of two types of inhibitory neurons. Nat. Neurosci. 8, 1283–1284.

    Article  PubMed  CAS  Google Scholar 

  56. Iremonger K.J., Bains J.S. 2007. Integration of asynchronously released quanta prolongs the postsynaptic spike window. J. Neurosci. 27(25), 6684–6691.

    Article  PubMed  CAS  Google Scholar 

  57. Manseau F., Marinelli S., Meńdez P., Schwaller B., Prince D., Huguenard J., Bacci A. 2010. Desynchronization of neocortical networks by asynchronous release of GABA at autaptic and synaptic contacts from fastspiking interneurons. PLoS Biol. 2010 Sep 28;8(9). pii: e1000492.

  58. Lu T., Trussell L. 2000. Inhibitory transmission mediated by asynchronous transmitter release. Neuron. 26, 683–694.

    Article  PubMed  CAS  Google Scholar 

  59. Chen C., Regehr W. 1999. Contributions of residual calcium to fast synaptic transmission. J. Neurosci. 19, 6257–6266.

    PubMed  CAS  Google Scholar 

  60. Balezina O.P. 2002. Role of intracellular calcium stores in nerve endings in regulation of neurotransmission secretion. Usp. Fiziol. Nauk (Rus.). 33(3), 38–56.

    CAS  Google Scholar 

  61. Bouchard R., Pattarini R., Geiger J.D. 2003. Presence and functional significance of presynaptic ryanodine receptors. Progr. Neurobiol. 69(6), 391–418.

    Article  CAS  Google Scholar 

  62. Narita K., Akita T., Osanai M., Shirasaki T., Kijima H., Kuba K. 1998. A Ca2+-induced Ca2+ release mechanism involved in asynchronous exocytosis at frog motor nerve terminals. J. Gen. Physiol. 112, 593–609.

    Article  PubMed  CAS  Google Scholar 

  63. Narita K., Akita T., Hachisuka J., Huang S.-M., Ochi K., Kuba K. 1989. Functional coupling of Ca2+ channels to ryanodine receptors at presynaptic terminals. J. Gen. Physiol. 115, 519–532.

    Article  Google Scholar 

  64. Bukharaeva E.A., Samigullin D., Nikolsky E.E., Magazanik L.G. 2007. Modulation of the kinetics of evoked quantal release at mouse neuromuscular junctions by calcium and strontium. J. Neurochem. 100, 939–949.

    Article  PubMed  CAS  Google Scholar 

  65. Bukharaeva E., Samigullin D., Nikolsky E., Vyskocil F. 2002. Protein kinase A cascade regulates quantal release dispersion at frog muscle endplate. J. Physiol. 538, 837–848.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Samigullin.

Additional information

Original Russian Text © D.V. Samigullin, V.F. Khuzakhmetova, A.N. Tsentsevitsky, E.A. Bukharaeva, 2011, published in Biologicheskie Membrany, 2011, Vol. 28, No. 6, pp. 436–445.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samigullin, D.V., Khuzakhmetova, V.F., Tsentsevitsky, A.N. et al. Presynaptic receptors regulating the time course of neurotransmitter release from vertebrate nerve endings. Biochem. Moscow Suppl. Ser. A 6, 1–8 (2012). https://doi.org/10.1134/S1990747811060134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747811060134

Keywords

Navigation