The effects of inhibitors and magnesium ions on the activity of the thermostable extracellular cAMP-Specific phosphodiesterase of Physarum polycephalum plasmodium

  • A. R. Nezvetsky
  • T. G. Orlova
  • S. I. Beylina
  • N. Ya. Orlov


Plasmodium of myxomycete Physarum polycephalum produces cyclic nucleotide phosphodiesterase (PDE). The extracellular PDE is cAMP-specific and highly thermostable. This study demonstrates that the extracellular PDE of Ph. polycephalum is weakly inhibited by caffeine, isobutylmethylxantine and theophiline (type I mammalian PDE nonspecific inhibitors), dipyridamole (mammalian PDE5, PDE6, PDE8 and PDE10 inhibitors), and erythro-9-[3-(2-hydroxynonyl)]-adenine (mammalian PDE2 inhibitor). The enzyme does not require Mg2+ for the activity. The results show that the Ph. polycephalum extracellular PDE differs from class I PDEs, represented by mammalian PDE1-PDE11, and, most likely, belongs to a poorly investigated class II PDEs.


3′,5′-cyclic nucleotide phosphodiesterase [EC] inhibitors of cyclic nucleotide-specific phosphodiesterases Mg2+ 



cyclic nucleotide phosphodiesterase


erythro-9-[3-(2-hydroxynonyl)]-adenine, mammalian PDE2 inhibitor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bender A.T., Beavo J. 2006. Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacol. Rev. 58(3), 488–519.PubMedCrossRefGoogle Scholar
  2. 2.
    Stryer L. 1991. Visual excitation and recovery. J. Biol. Chem. 266(17), 10711–10714.PubMedGoogle Scholar
  3. 3.
    Wentzinger L., Seebeck T. 2006. Protozoal phosphodiesterases. In: Cyclic Nucleotide Phosphodiesterases in Health and Disease. Eds Francis S.H., Beavo J.A., Houslay M.D. CRC Press, p. 277–300.Google Scholar
  4. 4.
    Murray A.W., Spiszman M., Atkinson D.E. 1971. Adenosine 3′,5′-monophosphate phosphodiesterase in the growth medium of Physarum polycephalum. Science. 171(970), 496–498.PubMedCrossRefGoogle Scholar
  5. 5.
    Kincaid R.L., Mansour T.E. 1979. Cyclic 3′,5′AMP phosphodiesterase in Physarum polycephalum. II. Kinetic properties. Biochim. Biophys. Acta. 588(3), 342–350.PubMedCrossRefGoogle Scholar
  6. 6.
    Orlow S.J., Shapiro R.I., Franke J., Kessin R.H. 1981. The extracellular cyclic nucleotide phosphodiesterase of Dictyostelium discoideum. Purification and properties. J. Biol. Chem. 256(14), 7620–7627.PubMedGoogle Scholar
  7. 7.
    Nezvetskii A.R., Orlova T.G., Beilina S.I., Orlov N.Ya. 2006. Thermostabile extracellular cyclic nucleotide phosphodiesterase of the Physarum polycephalum plasmodium. Biofizika (Rus.). 51(5), 810–816.Google Scholar
  8. 8.
    Matveeva N.B., Morozov M.A., Nezvetskii A.R., Orlova T.G., Teplov V.A., Beilina S.I. 2010. The involvement of the extracellular cAMP-specific phosphodiesterase in the regulation of cellular activity of the Physarum polycephalum plasmodium. Biofizika (Rus.). 55(6), 1076–1082.Google Scholar
  9. 9.
    Rascon A., Soderling S.H., Schaefer J.B., Beavo J.A. 2002. Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanasoma brucei. Proc. Natl. Acad. Sci. USA. 99(7), 4714–4719.PubMedCrossRefGoogle Scholar
  10. 10.
    Nikawa J., Sass P., Wigler M. 1987. Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 7(10), 3629–3636.PubMedGoogle Scholar
  11. 11.
    Liebman P.A., Evanczuk A.T. 1982. Real time assay of rod disk membrane cGMP phosphodiesterase and its controller enzymes. Meth. Enzymol. 81, 532–542.PubMedCrossRefGoogle Scholar
  12. 12.
    Orlov N.Ya., Kalinin E.V., Orlova T.G., Freidin A.A. 1988. Properties and content of cyclic nucleotide phosphodiesterase in photoreceptor outer segments of ground squirrel retina. Biochim. Biophys. Acta. 954(3), 325–335.PubMedCrossRefGoogle Scholar
  13. 13.
    Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  14. 14.
    Wera S., Ma P., Thevelein J.M. 1997. Glucose exerts opposite effects on mRNA versus protein and activity levels of Pde1, the low-affinity cAMP phosphodiesterase from budding yeast, Saccharomyces cerevisiae. FEBS Lett. 420(2–3), 147–150.CrossRefGoogle Scholar
  15. 15.
    Ma P., Wera S., van Dijck P., Thevelein J.M. 1999. The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol. Biol. Cell. 10(1), 91–104.PubMedGoogle Scholar
  16. 16.
    Lacombe M.-L., Podgorski G.J., Franke J., Kessin R.H. 1986. Molecular cloning and developmental expression of the cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum. J. Biol. Chem. 261(36), 16811–16817.PubMedGoogle Scholar
  17. 17.
    Podgorski G.J. Franke J., Kessin R.H. 1986. Isolation of a cDNA encoding a portion of the cyclic nucleotide phosphodiesterase of Dictyostelium discoideum. J. Gen. Microbiol. 132(4), 1043–1050.PubMedGoogle Scholar
  18. 18.
    Hoyer L.L., Cieslinski L.B., McLaughlin M.M., Torphy T.J., Shatzman A.R., Livi G.P. 1994. A Candida albicans cyclic nucleotide phosphodiesterase: Cloning and expression in Saccharomyces cerevisiae and biochemical characterization of the recombinant enzyme. Microbiology. 140(7), 1533–1542.PubMedCrossRefGoogle Scholar
  19. 19.
    Dunlap P.V., Callahan S.M. 1993. Characterization of a periplasmic 3′,5′-cyclic nucleotide phosphodiesterase gene, cpdP, from the marine symbiotic bacterium Vibrio fischeri. J. Bacteriol. 175(15), 4615–4624.PubMedGoogle Scholar
  20. 20.
    DeVoti J., Seydoux G., Beach D., McLeod M. 1991. Interaction between ran1 + protein kinase and cAMP dependent protein kinase as negative regulators of fission yeast meiosis. EMBO J. 10(12), 3759–3768.PubMedGoogle Scholar
  21. 21.
    Londesborough J. 1982. Activity of cyclic-AMP phosphodiesterase in permeabilised cells of Bakers’ yeast. Eur. J. Biochem. 126(3), 631–637.PubMedCrossRefGoogle Scholar
  22. 22.
    Callahan S.M., Cornell N.W., Dunlap P.V. 1995. Purification and properties of periplasmic 3′,5′-cyclic nucleotide phosphodiesterase. A novel zinc-containing enzyme from marine symbiotic bacterium Vibrio fischery. J. Biol. Chem. 270(29), 17627–17632.PubMedCrossRefGoogle Scholar
  23. 23.
    Bliokh Zh.L., Smolianinov V.V. 1977. Kinematics of the fibroblast spreading. II. Individual locomotor activity. Biofizika(Rus.). 22(4), 631–639.Google Scholar
  24. 24.
    Beilina S.I., Matveeva N.B., Priezzhev A.V., Romanovskiy Yu.M., Sukhorukov A.P., Teplov V.A. 1984. Plasmodium of the myxomycete Physarum polycephalum as an autowave self-organizing system. In: Self-organization Autowaves and Structures Far from Equilibrium. Springer-Verlag, p. 218–221.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. R. Nezvetsky
    • 1
  • T. G. Orlova
    • 1
  • S. I. Beylina
    • 1
  • N. Ya. Orlov
    • 1
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations