Skip to main content
Log in

The effects of inhibitors and magnesium ions on the activity of the thermostable extracellular cAMP-Specific phosphodiesterase of Physarum polycephalum plasmodium

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Plasmodium of myxomycete Physarum polycephalum produces cyclic nucleotide phosphodiesterase (PDE). The extracellular PDE is cAMP-specific and highly thermostable. This study demonstrates that the extracellular PDE of Ph. polycephalum is weakly inhibited by caffeine, isobutylmethylxantine and theophiline (type I mammalian PDE nonspecific inhibitors), dipyridamole (mammalian PDE5, PDE6, PDE8 and PDE10 inhibitors), and erythro-9-[3-(2-hydroxynonyl)]-adenine (mammalian PDE2 inhibitor). The enzyme does not require Mg2+ for the activity. The results show that the Ph. polycephalum extracellular PDE differs from class I PDEs, represented by mammalian PDE1-PDE11, and, most likely, belongs to a poorly investigated class II PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PDE:

cyclic nucleotide phosphodiesterase

EHNA:

erythro-9-[3-(2-hydroxynonyl)]-adenine, mammalian PDE2 inhibitor

References

  1. Bender A.T., Beavo J. 2006. Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacol. Rev. 58(3), 488–519.

    Article  PubMed  CAS  Google Scholar 

  2. Stryer L. 1991. Visual excitation and recovery. J. Biol. Chem. 266(17), 10711–10714.

    PubMed  CAS  Google Scholar 

  3. Wentzinger L., Seebeck T. 2006. Protozoal phosphodiesterases. In: Cyclic Nucleotide Phosphodiesterases in Health and Disease. Eds Francis S.H., Beavo J.A., Houslay M.D. CRC Press, p. 277–300.

  4. Murray A.W., Spiszman M., Atkinson D.E. 1971. Adenosine 3′,5′-monophosphate phosphodiesterase in the growth medium of Physarum polycephalum. Science. 171(970), 496–498.

    Article  PubMed  CAS  Google Scholar 

  5. Kincaid R.L., Mansour T.E. 1979. Cyclic 3′,5′AMP phosphodiesterase in Physarum polycephalum. II. Kinetic properties. Biochim. Biophys. Acta. 588(3), 342–350.

    Article  PubMed  CAS  Google Scholar 

  6. Orlow S.J., Shapiro R.I., Franke J., Kessin R.H. 1981. The extracellular cyclic nucleotide phosphodiesterase of Dictyostelium discoideum. Purification and properties. J. Biol. Chem. 256(14), 7620–7627.

    PubMed  CAS  Google Scholar 

  7. Nezvetskii A.R., Orlova T.G., Beilina S.I., Orlov N.Ya. 2006. Thermostabile extracellular cyclic nucleotide phosphodiesterase of the Physarum polycephalum plasmodium. Biofizika (Rus.). 51(5), 810–816.

    CAS  Google Scholar 

  8. Matveeva N.B., Morozov M.A., Nezvetskii A.R., Orlova T.G., Teplov V.A., Beilina S.I. 2010. The involvement of the extracellular cAMP-specific phosphodiesterase in the regulation of cellular activity of the Physarum polycephalum plasmodium. Biofizika (Rus.). 55(6), 1076–1082.

    CAS  Google Scholar 

  9. Rascon A., Soderling S.H., Schaefer J.B., Beavo J.A. 2002. Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanasoma brucei. Proc. Natl. Acad. Sci. USA. 99(7), 4714–4719.

    Article  PubMed  CAS  Google Scholar 

  10. Nikawa J., Sass P., Wigler M. 1987. Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 7(10), 3629–3636.

    PubMed  CAS  Google Scholar 

  11. Liebman P.A., Evanczuk A.T. 1982. Real time assay of rod disk membrane cGMP phosphodiesterase and its controller enzymes. Meth. Enzymol. 81, 532–542.

    Article  PubMed  CAS  Google Scholar 

  12. Orlov N.Ya., Kalinin E.V., Orlova T.G., Freidin A.A. 1988. Properties and content of cyclic nucleotide phosphodiesterase in photoreceptor outer segments of ground squirrel retina. Biochim. Biophys. Acta. 954(3), 325–335.

    Article  PubMed  CAS  Google Scholar 

  13. Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  14. Wera S., Ma P., Thevelein J.M. 1997. Glucose exerts opposite effects on mRNA versus protein and activity levels of Pde1, the low-affinity cAMP phosphodiesterase from budding yeast, Saccharomyces cerevisiae. FEBS Lett. 420(2–3), 147–150.

    Article  CAS  Google Scholar 

  15. Ma P., Wera S., van Dijck P., Thevelein J.M. 1999. The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol. Biol. Cell. 10(1), 91–104.

    PubMed  CAS  Google Scholar 

  16. Lacombe M.-L., Podgorski G.J., Franke J., Kessin R.H. 1986. Molecular cloning and developmental expression of the cyclic nucleotide phosphodiesterase gene of Dictyostelium discoideum. J. Biol. Chem. 261(36), 16811–16817.

    PubMed  CAS  Google Scholar 

  17. Podgorski G.J. Franke J., Kessin R.H. 1986. Isolation of a cDNA encoding a portion of the cyclic nucleotide phosphodiesterase of Dictyostelium discoideum. J. Gen. Microbiol. 132(4), 1043–1050.

    PubMed  CAS  Google Scholar 

  18. Hoyer L.L., Cieslinski L.B., McLaughlin M.M., Torphy T.J., Shatzman A.R., Livi G.P. 1994. A Candida albicans cyclic nucleotide phosphodiesterase: Cloning and expression in Saccharomyces cerevisiae and biochemical characterization of the recombinant enzyme. Microbiology. 140(7), 1533–1542.

    Article  PubMed  CAS  Google Scholar 

  19. Dunlap P.V., Callahan S.M. 1993. Characterization of a periplasmic 3′,5′-cyclic nucleotide phosphodiesterase gene, cpdP, from the marine symbiotic bacterium Vibrio fischeri. J. Bacteriol. 175(15), 4615–4624.

    PubMed  CAS  Google Scholar 

  20. DeVoti J., Seydoux G., Beach D., McLeod M. 1991. Interaction between ran1 + protein kinase and cAMP dependent protein kinase as negative regulators of fission yeast meiosis. EMBO J. 10(12), 3759–3768.

    PubMed  CAS  Google Scholar 

  21. Londesborough J. 1982. Activity of cyclic-AMP phosphodiesterase in permeabilised cells of Bakers’ yeast. Eur. J. Biochem. 126(3), 631–637.

    Article  PubMed  CAS  Google Scholar 

  22. Callahan S.M., Cornell N.W., Dunlap P.V. 1995. Purification and properties of periplasmic 3′,5′-cyclic nucleotide phosphodiesterase. A novel zinc-containing enzyme from marine symbiotic bacterium Vibrio fischery. J. Biol. Chem. 270(29), 17627–17632.

    Article  PubMed  CAS  Google Scholar 

  23. Bliokh Zh.L., Smolianinov V.V. 1977. Kinematics of the fibroblast spreading. II. Individual locomotor activity. Biofizika(Rus.). 22(4), 631–639.

    Google Scholar 

  24. Beilina S.I., Matveeva N.B., Priezzhev A.V., Romanovskiy Yu.M., Sukhorukov A.P., Teplov V.A. 1984. Plasmodium of the myxomycete Physarum polycephalum as an autowave self-organizing system. In: Self-organization Autowaves and Structures Far from Equilibrium. Springer-Verlag, p. 218–221.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ya. Orlov.

Additional information

Original Russian Text © A.R. Nezvetsky, T.G. Orlova, S.I. Beylina, N.Ya. Orlov, 2011, published in Biologicheskie Membrany, 2011, Vol. 28, No. 6, pp. 541–546.

The article wastranslatedby the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nezvetsky, A.R., Orlova, T.G., Beylina, S.I. et al. The effects of inhibitors and magnesium ions on the activity of the thermostable extracellular cAMP-Specific phosphodiesterase of Physarum polycephalum plasmodium. Biochem. Moscow Suppl. Ser. A 6, 100–104 (2012). https://doi.org/10.1134/S1990747811060109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747811060109

Keywords

Navigation