Retention of gold nanoparticles in the structure of quasinematic layers formed by DNA molecules

  • S. G. Skuridin
  • V. A. Dubinskaya
  • E. V. Shtykova
  • V. V. Volkov
  • V. M. Rudoy
  • O. V. Dement’eva
  • V. A. Kuzmin
  • E. S. Lisitsyna
  • S. T. Zakhidov
  • I. A. Zelenina
  • Yu. M. Yevdokimov
Articles

Abstract

Gold nanoparticles are shown to get incorporated into double-stranded DNA molecules forming quasinematic layers in the cholesteric liquid-crystalline dispersion particles. The process of nanoparticle incorporation results in distortion in an ordered arrangement of the neighboring dsDNA molecules in a layer and in global spatial structure of particles of the dispersion, which may be one of the possible causes of the genotoxicity of gold nanoparticles.

Keywords

double-stranded DNA gold nanoparticles liquid-crystalline DNA dispersions circular dichroism small-angle X-ray scattering (SAXS) structure of lyotropic liquid crystals of (bio)polymers toxicity of nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skuridin S.G., Dubinskaya V.A., Rudoy V.M., Dement’eva O.V., Zakhidov S.T., Marshak T.L., Kuzmin V.A., Popenko V.I., Yevdokimov Yu.M. 2010. Effect of gold nanoparticles on DNA packaging in model systems. DAN (Rus.). 432(6), 838–841.Google Scholar
  2. 2.
    Zakhidov S.T., Marshak T.L., Malolina E.A., Kulibin A.Yu., Zelenina I.A., Pavlyuchenkova S.M., Rudoy V.M., Dement’eva O.V., Skuridin S.G., Yevdokimov Yu.M. 2010. Gold nanoparticles impair nuclear chromatin decondensation process in murine sperm cells in vitro. Biol. membrany (Rus.). 27(4), 349–353.Google Scholar
  3. 3.
    Yevdokimov Yu.M., Salyanov V.I., Semenov S.V., Skuridin S.G. 2008. Zhidkokristallicheskie dispersii i nanokonstruktsii DNK (DNA Liquid-crystalline Dispersions and Nanostructures). Ed. Yevdokimov Yu.M. Moscow: Radiotekhnika.Google Scholar
  4. 4.
    Duff D.G., Baiker A., Edwards P.P. 1993. A new hydrosol of gold clusters. 1. Formation and particles size variation. Langmuir. 9, 2301–2309.CrossRefGoogle Scholar
  5. 5.
    Marmur J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3, 208–216.CrossRefGoogle Scholar
  6. 6.
    Maniatis T., Sambrook J., Fritsch E.F. 1989. Molecular cloning: A laboratory manual. N.Y.: Cold Spring Harbor Lab. Press.Google Scholar
  7. 7.
    Zipper H., Brunner H., Bernhagen J., Vitzthum F. 2004. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucl. Acids Res. 32, e103 (doi: 10.1093/nar/gnh101).PubMedCrossRefGoogle Scholar
  8. 8.
    Kompanets O. N. 2004. Portable optical biosensors for detecion of biologically active and toxic compounds. Uspekhi fiz. nauk (Rus.). 174(6), 686–690.CrossRefGoogle Scholar
  9. 9.
    Yevdokimov Yu.M., Skuridin S.G., Salyanov V.I. 1988. Liquid-crystalline phases of double-stranded nucleic acids in vitro and in vivo. Liq. Crystals. 3, 1443–1459.CrossRefGoogle Scholar
  10. 10.
    Shtykova E.V., Volkov V.V., Salyanov V.I., Yevdokimov Yu.M. 2010. SAXS-data-based structural modeling of DNA-gadolinium complexes fixed in particles of cholesteric liquid-crystalline dispersions. Eur. Biophys. J. 39, 1313–1322.PubMedCrossRefGoogle Scholar
  11. 11.
    Mogilevskiy L.Yu., Dembo A.T., Svergun D.I., Feygin L.A. 1984. Small-angle X-ray diffractometer with single coordinate detector. Crystallography. 29(3), 587–591.Google Scholar
  12. 12.
    Feigin L.A., Svergun D.I. 1987. Structure Analysis by Small-Angle X-Ray and Neutron Scattering. N.Y.: Plenum Press.Google Scholar
  13. 13.
    Konarev P.V., Volkov V.V., Sokolova A.V., Koch M.H.J., Svergun D. 2003. PRIMUS: A Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallography. 36, 1277–1282.CrossRefGoogle Scholar
  14. 14.
    Boisselier E., Astruc D. 2009. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–1782.PubMedCrossRefGoogle Scholar
  15. 15.
    Zharenkova L.V., Komarov P.V., Khalatur P.G. 2007. Modelling the process of DNA molecule fragment metallization by gold nanoparticles. Kolloidnyi zhurnal (Rus.). 69, 753–765.Google Scholar
  16. 16.
    Yevdokimov Yu.M., Salyanov V.I., Skuridin S.G., Semenov S.V., Palumbo M. 1995. Liquid-crystalline dispersions of the (DNA-Drug) complexes as a background for creation of a multifunctional biosensing units: first step. In: Evolutionary Biochemistry and Related Areas of Physicochemical Biology. Eds. Poglazov B.F., Kurganov B.I., Kritsky M.S., Gladilin K.L. Moscow: Bach Institute of Biochemistry and ANKO, p. 315–326.Google Scholar
  17. 17.
    Saeva F.D. 1979. Cholesteric liquid crystal-induced circular dichroism. In: Liquid Crystals. The Fourth State of Matter. N.Y.: M. Dekker, p. 249–271.Google Scholar
  18. 18.
    Kamat P.V. 2002. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B. 106, 7729–7744.CrossRefGoogle Scholar
  19. 19.
    Livolant F., Leforestier A. 1996. Condensed phases of DNA: Structures and phase transitions. Prog. Polym. Sci. 21, 1115–1164.CrossRefGoogle Scholar
  20. 20.
    Wiwanitkit V., Sereemaspun A., Rojanathanes R. 2009. Effect of gold nanoparticles on spermatozoa: The first world report. Fertility & Sterility. 91, e7.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. G. Skuridin
    • 1
  • V. A. Dubinskaya
    • 2
  • E. V. Shtykova
    • 3
  • V. V. Volkov
    • 3
  • V. M. Rudoy
    • 4
  • O. V. Dement’eva
    • 4
  • V. A. Kuzmin
    • 5
  • E. S. Lisitsyna
    • 5
  • S. T. Zakhidov
    • 6
  • I. A. Zelenina
    • 6
  • Yu. M. Yevdokimov
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Scientific-Research and Education-Methodological Centre of Biomedical Technologies of the Russian Institute for Medicinal and Aromatic HerbsRussian Academy of Agricultural SciencesMoscowRussia
  3. 3.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  4. 4.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  5. 5.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  6. 6.Biological FacultyMoscow Lomonosov State UniversityMoscowRussia

Personalised recommendations