OmpC-like porin from Yersinia pseudotuberculosis: Molecular characteristics, physico-chemical and functional properties

  • O. D. Novikova
  • V. A. Khomenko
  • V. I. Emelyanenko
  • G. N. Likhatskaya
  • E. A. Zelepuga
  • N. Yu. Kim
  • M. P. Isaeva
  • O. Yu. Portnyagina
  • O. P. Vostrikova
  • O. V. Sidorova
  • T. F. Solov’eva
Articles

Abstract

Pore-forming protein from the outer membrane of Yersinia pseudotuberculosis cultured at 37°C has been isolated and characterized. Comparative analysis of the primary and three-dimensional structures of this protein and of OmpC porin from E. coli was carried out, functional properties of these proteins have been studied using bilayer lipid membranes (BLM) technique. The degree of homology, molecular mass and pore-forming properties of the isolated porin was found to be closer to those of OmpC porin from E. coli than OmpF porin from Y. pseudotuberculosis. The value of the most probable conductivity of OmpC porin from Y. pseudotuberculosis (0.18 pS) in BLM corresponded to the conductivity of the native trimer of this protein. Using CD spectroscopy, the porins investigated were shown to belong to the β-structured proteins. Data of the primary structure and intrinsic protein fluorescence revealed essential differences in localization and microenvironment of tryptophan residues in the porins investigated. Participation of external loops L2 and L6 in the formation of the antigenic structure of OmpC porin from Y. pseudotuberculosis was demonstrated. On the basis of crystal structure of osmoporin from Klebsiella pneumoniae, three-dimensional models of the monomer and trimer of the Y. pseudotuberculosis porin were obtained. Using Web server AGGRESCAN, the localization of protein structure sites with the increased aggregation capability (hot spots) has been deter-mined. It turned out that some of these zones localize in the region of intramonomeric contacts in the porin trimer; however, a large part of them is located on the external surface of the β-barrel. The process of thermal denaturation has been studied and the melting points of the porins were determined. It was found that significant changes in the microenvironment of the indole fluorophores (especially tryptophan residues of spectral class I) took place in the process of the thermodenaturation of the proteins. These changes preceded the irreversible conformational transition observed for the E. coli porin at 77°C and for the Y. pseudotuberculosis porin at 70°C.

Keywords

Yersinia pseudotuberculosis OmpC porin spatial structure 

References

  1. 1.
    Nikaido H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 676, 593–656.CrossRefGoogle Scholar
  2. 2.
    Delcour A.H. 2003. Solute uptake through general porins. Front. Biosci. 8, 1055–1071.CrossRefGoogle Scholar
  3. 3.
    Alcaraz A., Nestorovich E. M., Aguilella-Arzo M., Aguilella V. M., Bezrukov S. M. 2004. Salting out the ionic selectivity of a wide channel: The asymmetry of OmpF. Biophys. J. 87, 943–957.PubMedCrossRefGoogle Scholar
  4. 4.
    Tsenyova G.Ya. 2006. Iersinii i iersiniozy (Yersiniae and Yersiniosises). St.-Petersburg: Massmedia.Google Scholar
  5. 5.
    Smirnov I.V. 2004. Yersiniosis causative agent and related microorganisms. Clin. microbiol. antimicrob. chemiother. (Rus.). 6(1), 10–21.Google Scholar
  6. 6.
    Sulakvelidze A. 2000. Yersinia other than Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis: The ignored species. Microb. Infect. 2, 497–513.CrossRefGoogle Scholar
  7. 7.
    Somov G.P., Pokrovsky V.I., Besednova N.N. 1990. Psevdotuberkulez (Pseudoruberculosis). Moscow: Medicine.Google Scholar
  8. 8.
    Martinez R.J. 1983. Plasmid-mediated and temperature-regulated surface properties of Yersinia enterocolitica. Infect. Immun. 41, 921–930.PubMedGoogle Scholar
  9. 9.
    Portnoy D.A., Wolf-Watz H., Bolin I., Beeder A.B., Falkow S. 1984. Characterization of common virulence plasmids in Yersinia species and their role in the expression of outer membrane proteins. Infect. Immun. 43, 108–114.PubMedGoogle Scholar
  10. 10.
    Likhatskaya G.N., Novikova O.D., Solov’eva T.F., Ovodov Yu.S. 1985. Isolation of pore-forming protein of Yersinia pseudotuberculosis outer membrane and studying of its effect on BLM conductivity. Biol. membrany. (Rus.). 2(12), 1219–1224.Google Scholar
  11. 11.
    Novikova O.D., Frolova G.M., Vakorina T.I., Tarankova Z.A., Glazunov V.P., Solov’eva T.F., Ovodov Yu.S. 1989. Conformational stability and immunochemical properties of yersinin - a major protein of Yersinia pseudotuberculosis outer membrane. Bioorgan. chem. (Rus.). 15(6), 763–772.Google Scholar
  12. 12.
    Novikova O.D., Likhatskaya G.N., Frolova G.M., Vostrikova O.P., Khomenko V.A., Timchenko N.F., Solov’eva T.F., Ovodov Yu.S. 1990. Molecular organization and biological properties of yersinin — porin from Yersinia pseudotuberculosis. Biol. membrany. (Rus.). 7(5), 453–461.Google Scholar
  13. 13.
    Vostrikova O.P., Kim N.Yu., Likhatskaya G.N., Guzev K.V., Vakorina T.I., Khomenko V.A., Novikova O.D., Solov’eva T.F. 2006. Structure and function of pore-forming proteins of Yersinia genus. 1. Isolation and comparative characteristics of physico-chemical properties and functional activity of yersinia porins. Bioorgan. chem. (Rus.). 32(4), 371–383.Google Scholar
  14. 14.
    Schnaitman C.A. 1971. Solubilization of the cytoplasmic membrane of Escherichia coli by triton X-100. J. Bacteriol. 108, 545–552.PubMedGoogle Scholar
  15. 15.
    Nurminen M. 1985. Isolation of porin trimers. In: Enterobacterial Surface Antigen Methods for Molecular Characterization. Eds Korhonen T.K., Dawes E.A., Makela P.H. New York: Elsevier Science, p. 293–300.Google Scholar
  16. 16.
    Khomenko V.A., Novikova O.D., Fedoreeva L.I., Likhatskaya G.N., Borisova M.P., Vostrikova O.P., Vakorina T.I., Timchenko N.F., Solov’eva T.F., Ovodov Yu.S. 1994. Porin from Yersinia enterocolitica 0:3. Isolation and characterization. Biol. membrany. (Rus.). 11(1), 68–79.Google Scholar
  17. 17.
    Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. 1975. Electrophoretic resolution of the major outer membrane of Escherichia coli K-12 into four bands. FEBS Lett. 58, 254–258.PubMedCrossRefGoogle Scholar
  18. 18.
    Gal E., Medyeshi G., Verezkei L. 1982. Electrophoresis in Macromolecule Separation. Moscow: Mir.Google Scholar
  19. 19.
    Provencher C.W., Glockner J. 1981. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 20, 34–37.CrossRefGoogle Scholar
  20. 20.
    Emelyanenko V.I. 1991. Analytical presentation of fluorescence spectra forms of the standarts. Spectrofluorimeter calibration at spectral sensitivity in UV region. J. App. Spect. (Rus.). 55(4), 587–593.Google Scholar
  21. 21.
    Burstein E.A., Vedenkina N.S. Ivkova M.N. 1973. Fluorescence and the location of triptophan residues in protein molecules. Photochem. Photobiol. 8, 263–279.CrossRefGoogle Scholar
  22. 22.
    Marquardt D. W. 1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 11, 431–441.CrossRefGoogle Scholar
  23. 23.
    Privalov P.L., Potekhin S.A. 1986. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 131, 4–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Guex N., Peitsch M. C. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. J. Electrophoresis. 18, 2714–2723.CrossRefGoogle Scholar
  25. 25.
    Arnold K., Bordoli L., Kopp J., Schwede T. 2006. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics. 22, 195–201.PubMedCrossRefGoogle Scholar
  26. 26.
    Schwede T., Kopp J., Guex N. and Peitsch M. C. 2003. SWISS-MODEL: an automated protein homologymodeling server. J. Nucleic Acid Research. 31, 3381–3385.CrossRefGoogle Scholar
  27. 27.
    Dutzler R., Schirmer T. 1999. Crystal structure and functional characterization of OmpK 36, the osmoporin of Klebsiella pneumoniae. Structure. 7, 425–434.PubMedCrossRefGoogle Scholar
  28. 28.
    Westbrook J., Feng Z., Chen L., Yang H. and Berman H.M. 2003. The Protein Data Bank and structural genomics. Nucleic Acids Res. 31, 489–491.PubMedCrossRefGoogle Scholar
  29. 29.
    Garavito R.M., Rosenbusch J.P. 1986. Isolation and crystallization of bacterial porin. Methods Enzymol. 125, 309–328.PubMedCrossRefGoogle Scholar
  30. 30.
    Rosenbusch J.P. 1974. Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. J. Biol. Chem. 249, 8019–8029.PubMedGoogle Scholar
  31. 31.
    Eppinger M., Rosovitz M.J., Fricke W.F., Rasko D.A., Kokorina G., Fayolle C., Lindler L.E., Carniel E., Ravel J. 2007. The complete genome sequence of Yersinia pseudotuberculosis IP31758, the causative agent of Far East scarlet-like fever. PLoS Genet. 3(8), 142.CrossRefGoogle Scholar
  32. 32.
    Cowan S.W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R.A., Jansonius J.N., Rosenbusch J.P. 1992. Crystal structure explains functional properties of two Escherichia coli porins. Nature. 358, 727–733.PubMedCrossRefGoogle Scholar
  33. 33.
    Arockiasamy A., Murthy G.S., Rukmini M.R., Sundara Baalaji N., Katpally U.C., Krishnaswamy S. 2004. Conformational epitope mapping of OmpC, a major cell surface antigen from Salmonella typhi. J. Struct. Biol. 148, 22–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Portnyagina O.Yu., Novikova O.D., Solov’eva T.F. 2005. Immunological properties of non-specific porins of Gram-negative bacteria outer membrane. Biol. membrany. (Rus.). 22(6), 435–443.Google Scholar
  35. 35.
    Bredin, J., Saint N., Malléa M., Dé E., Molle G., Pagès J.-M., and Simonet V. 2002. Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochem. J. 363, 521–528.PubMedCrossRefGoogle Scholar
  36. 36.
    Likhatskaya G.N., Solov’eva T.F., Novikova O.D., Issaeva M.P., Guzev K.V., Kryzhko I.B., Trifonov E.V., Nurminski E.A. 2005. Homology models of the Yersinia pseudotuberculosis and Yersinia pestis general porins and comperative analysis of their functional and antigenic regions. J. Biomol. Struct. Dyn. 23, 163–174.PubMedGoogle Scholar
  37. 37.
    Chamberlain A.K., Bowie J.U. 2004. Asymmetric amino acid compositions of transmembrane β-strands. Protein Sci. 13, 2270–2274.PubMedCrossRefGoogle Scholar
  38. 38.
    Tartaglia G.G., Vendruscolo M. The Zyggregator. 2008. Method for predicting protein aggregation propensities. Chem. Soc. Rev. 37, 1395–1401.PubMedCrossRefGoogle Scholar
  39. 39.
    de Groot N.S., Ventura S. 2010. Protein aggregation profile of the bacterial cytosol. PLoS ONE. 5(2), 9383.CrossRefGoogle Scholar
  40. 40.
    Conchillo-Sole O, De Groot NS, Aviles FX, Vendrell J, Daura X., Daura, S. Ventura 2007. AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics. 8, 65.PubMedCrossRefGoogle Scholar
  41. 41.
    Jeanteur D., Lakey J.H., Pattus F. 1991. The bacterial porin superfamily: Sequence alignment and structure prediction. Mol. Microbiol. 5, 2153–2164.PubMedCrossRefGoogle Scholar
  42. 42.
    Branden C., Tooze J. 1999. Introduction to Protein Structure. New York: Garland.Google Scholar
  43. 43.
    Lupi N., Bourgois A., Bernadac A., Laboucarié S., Pagès J.M. 1989. Immunological analysis of porin polymorphism in Escherichia coli B and K-12. Mol. Immunol. 26. 1027–1036.PubMedCrossRefGoogle Scholar
  44. 44.
    Hedstrom R.C, Pavlovskis O.R, Galloway D.R. 1984. Antibody response of infected mice to outer membrane proteins of Pseudomonas aeruginosa. Infect. Immun. 43, 49–53.PubMedGoogle Scholar
  45. 45.
    Vostrikova O.P., Novikova O.D., Drobkov V.I., Darmov I.V., Marakulin I.V., Solov’eva T.F. 2000. Immune response to general pore-forming protein of Yersinia pseudotuberculosis outer membrane in human and experimental animals. Dep. in VINITI, Moscow, 28.03.00. 795-B, 15.Google Scholar
  46. 46.
    Antonets D.V., Bakulina A.Yu., Portnyagina O.Yu., Sidorova O.V., Novikova O.D., Maksyutov A.Z. 2007. Prediction of antigenically active regions of OmpF-like porin from Yersinia pseudotuberculosis. DAN Biochim. Biophys. (Rus.). 414, 544–546.Google Scholar
  47. 47.
    Singh H., Raghava G.P.S.. 2001. ProPred: Prediction of HLA-DR binding sites. Bioinformatics. 17, 1236–1237.PubMedCrossRefGoogle Scholar
  48. 48.
    Rammensee H.G., Bachmann J., Emmerich N.P.N., Bachor O.A., Stwvanovi S. 1999. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenetics. 50, 213–219.PubMedCrossRefGoogle Scholar
  49. 49.
    Reche P.A., Reinherz E.L. 2003. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. J. Mol. Biol. 331, 623–641.PubMedCrossRefGoogle Scholar
  50. 50.
    Haltia T., Freire E. 1995. Forces and factors that contribute to the structural stability of membrane proteins. Biochim. Biophys. Acta. 1241, 295–322.PubMedGoogle Scholar
  51. 51.
    Novikova O.D., Vakorina T.I., Khomenko V.A., Lihatskaya G.N., Kim N.Yu., Emelyanenko V.I., Kuznetsova S.M., Solov’eva T.F. 2008. Effect of the cultivation conditions on the spatial structure and functional activity of of OmpF-like porin of Yersinia pseudotuberculosis outer membrane. Biochemistry (Moscow) (Rus.). 73(2), 173–184.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • O. D. Novikova
    • 1
  • V. A. Khomenko
    • 1
  • V. I. Emelyanenko
    • 2
  • G. N. Likhatskaya
    • 1
  • E. A. Zelepuga
    • 1
  • N. Yu. Kim
    • 1
  • M. P. Isaeva
    • 1
  • O. Yu. Portnyagina
    • 1
  • O. P. Vostrikova
    • 1
  • O. V. Sidorova
    • 1
  • T. F. Solov’eva
    • 1
  1. 1.Pacific Institute of Bioorganic Chemistry, Far East DivisionRussian Academy of SciencesVladivostokRussia
  2. 2.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow regionRussia

Personalised recommendations