Suppression of the plasma membrane H+-conductance on the background of high H+-pump activity in dithiothreitol-treated Chara cells

  • S. O. Dodonova
  • N. A. Krupenina
  • A. A. Bulychev


Photosynthesizing cells of characean algae exposed to light are able to produce pH bands corresponding to alternate areas with dominant H+-pump activity and high H+-conductance of the cell membrane. The action potential generation temporally arrests the counter-directed H+ fluxes, which gives rise to opposite pH shifts in different cell regions and represents a suitable indicator for activities of the plasma membrane H+-transporting systems. Measurements of pH near the cell surface by means of microelectrodes and microspectrophotometry in the presence of pH-indicating dye thymol blue have shown that the treatment of cells with dithiothreitol (SH-group reducing agent) suppresses pH changes induced by the action potential generation in the alkaline cell areas and considerably increases the concurrent pH changes in the acid regions. Measurements of plasma membrane resistance in the alkaline zones revealed that dithiothreitol inhibits the light-dependent conductance of the resting cell and diminishes the conductance inactivation caused by the action potential generation. The data suggest that the reduction of accessible disulfide bonds results in the decrease of H+-conductance, whereas the activity of plasma membrane H+-pump remains unimpaired or is even enhanced.


Characean algae plasmalemma H+ transport membrane conductance dithiothreitol action potential 



action potential




pH in the outer medium in the proximity to cell surface


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeCoursey T.E. 2003. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475–579.PubMedGoogle Scholar
  2. 2.
    Miedema H., Felle H., Prins H.B.A. 1992. Effect of high pH on the plasma membrane potential and conductance in Elodea densa. J. Membrane Biol. 128, 63–69.CrossRefGoogle Scholar
  3. 3.
    Miedema H., Prins H.B.A. 1992. Coupling of proton fluxes in the polar leaves of Potamogeton lucens L. J. Exp. Bot. 43, 907–914.CrossRefGoogle Scholar
  4. 4.
    Lucas W.J., Keifer D.W., Sanders D. 1983. Bicarbonate transport in Chara corallina: Evidence for cotransport of HCO3 with H+. J. Membrane Biol. 73, 263–274.CrossRefGoogle Scholar
  5. 5.
    Bulychev A.A., Cherkashin A.A., Rubin A.B., Vredenberg W.J., Zykov V.S., Müller S.C. 2001. Comparative study on photosynthetic activity of chloroplasts in acid and alkaline zones of Chara corallina. Bioelectrochemistry. 53, 225–232.CrossRefPubMedGoogle Scholar
  6. 6.
    Bulychev A.A., Vredenberg W.J. 2003. Spatio-temporal patterns of photosystem II activity and plasma-membrane proton flows in Chara corallina cells exposed to overall and local illumination. Planta. 218, 143–151.CrossRefPubMedGoogle Scholar
  7. 7.
    Krupenina N.A., Bulychev A.A., Roelfsema M.R.G., Schreiber U. 2008. Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photochem. Photobiol. Sci. 7, 681–688.CrossRefPubMedGoogle Scholar
  8. 8.
    Shimmen T., Wakabayashi A. 2008. Involvement of membrane potential in alkaline band formation by internodal cells of Chara corallina. Plant Cell Physiol. 49, 1614–1620.CrossRefPubMedGoogle Scholar
  9. 9.
    Shimmen T., Yonemura S., Negoro M., Lucas W.J. 2003. Studies on alkaline band formation in Chara corallina: Ameliorating effect of Ca2+ on inhibition induced by osmotic shock. Plant Cell Physiol. 44, 957–960.CrossRefPubMedGoogle Scholar
  10. 10.
    Bulychev A.A., Krupenina N.A. 2009. Transient removal of alkaline zones after excitation of Chara cells is associated with inactivation of high conductance in the plasmalemma. Plant Signaling & Behavior. 4, 24–31.CrossRefGoogle Scholar
  11. 11.
    Bulychev A.A., van den Wijngaard P.W.J., de Boer A.H. 2005. Spatial coordination of chloroplast and plasma membrane activities in Chara cells and its disruption through inactivation of 14-3-3 proteins. Biochemistry (Moscow). 70, 55–61.Google Scholar
  12. 12.
    Lucas W.J., Nuccitelli R. 1980. HCO3 and OH transport across the plasmalemma of Chara: Spatial resolution obtained using extracellular vibrating probe. Planta. 150, 120–131.CrossRefGoogle Scholar
  13. 13.
    Bulychev A.A., Kamzolkina N.A., Luengviriya J., Rubin A.B., Müller S.C. 2004. Effect of a single excitation stimulus on photosynthetic activity and light-dependent pH banding in Chara cells. J. Membrane Biol. 202, 11–19.CrossRefGoogle Scholar
  14. 14.
    Bulychev A.A., Krupenina N.A. 2010. Inactivation of plasmalemma conductance in alkaline zones of Chara corallina after generation of action potential. Biochemistry (Moscow), Suppl. Series A. 4, 232–239.CrossRefGoogle Scholar
  15. 15.
    Plieth C., Tabrizi H., Hansen U.-P. 1994. Relationship between banding and photosynthetic activity in Chara corallina as studied by the spatially different induction curves of chlorophyll fluorescence observed by an image analysis system. Physiol. Plant. 91, 205–211.CrossRefGoogle Scholar
  16. 16.
    Carpaneto A., Cantu A.M., Gambale F. 1999. Redox agents regulate ion channel activity in vacuoles from higher plant cells. FEBS Lett. 442, 129–132.CrossRefPubMedGoogle Scholar
  17. 17.
    Fedorenko A.L., Lozovaya N.A., Volkova T.M., Kryshtal O.A. 2006. Antioxidant-caused changes in the permeability of proton-gated ion channels for sodium and calcium. Neurophysiology. 38, 158–162.CrossRefGoogle Scholar
  18. 18.
    Nelson N., Harvey W.R. 1999. Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol. Rev. 79, 361–385.PubMedGoogle Scholar
  19. 19.
    Bulychev A.A., Kamzolkina N.A., Müller S., Cherkashin A.A., Rubin A.B. 2004. Temporal suppression of periodic pH profile along a charophyte cell after the generation of action potential, Dokl. Biochem. Biophys. 396, 128–131.CrossRefPubMedGoogle Scholar
  20. 20.
    Smith J.R., Walker N.A. 1983. Membrane conductance of Chara measured in the acid and basic zones. J. Membr. Biol. 73, 193–202.CrossRefGoogle Scholar
  21. 21.
    Smith J.R., Walker N.A. 1985. Effects of pH and light on the membrane conductance measured in the acid and basic zones of Chara. J. Membr. Biol. 83, 193–205.CrossRefGoogle Scholar
  22. 22.
    Bisson M.A., Walker N.A. 1980. The Chara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH. J. Membr. Biol. 56, 1–7.CrossRefGoogle Scholar
  23. 23.
    Sokolik A.I., Yurin V.M. 1986. Potassium channels in plasLmalemma of Nitella cells at rest. J. Membr. Biol. 89, 9–22.CrossRefGoogle Scholar
  24. 24.
    Petrov V.V., Smirnova V.V., Okorokov L.A. 1992. Mercaptoethanol and dithiothreitol decrease the difference of electrochemical proton potentials across the yeast plasma and vacuolar membranes and activate their H+-ATPases. Yeast. 8, 589–598.CrossRefPubMedGoogle Scholar
  25. 25.
    Gilmore A.M., Yamamoto H.Y. 1992. Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proc. Natl. Acad. Sci. USA. 89, 1899–1903.CrossRefPubMedGoogle Scholar
  26. 26.
    Schwarz O., Schürmann P., Strotmann H. 1997. Kinetics and thioredoxin specificity of thiol modulation of the chloroplast H+-ATPase. J. Biol. Chem. 272, 16924–16927.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. O. Dodonova
    • 1
  • N. A. Krupenina
    • 1
  • A. A. Bulychev
    • 1
  1. 1.Department of Biophysics, Faculty of BiologyMoscow Lomonosov State UniversityMoscowRussia

Personalised recommendations