Advertisement

The priming effect of halogenated phospholipids on the functional responses of human neutrophils

  • I. V. Gorudko
  • T. V. Vakhrusheva
  • A. V. Mukhortova
  • S. N. Cherenkevich
  • A. V. Timoshenko
  • V. I. Sergienko
  • O. M. Panasenko
Articles

Abstract

Halogenated lipids formed in the reactions with myeloperoxidase (MPO)-derived species may contribute to the regulation of the functional activity of cells. In the present study we have investigated the effects of chloro- and bromohydrins formed in the HOCl and HOBr reactions, respectively, with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on three different functional responses of human neutrophils: H2O2 generation, degranulation (MPO exocytosis), and cell aggregation. It was shown that POPC chloro- and bromohydrins (POPC-Cl and POPC-Br) induced the priming of neutrophils, resulting in significant upregulation of cell responses to neutrophil stimulators such as N-formyl-Met-Leu-Phe and lectin from Solanum tuberosum. The stimulating effects of POPC-Cl and POPC-Br were observed at low micromolar concentrations (liposomal concentration of POPC, 0.5–5 μM; the content of POPC-Cl or POPC-Br, 38 ± 3% of total lipids) after a short exposure (about 5 min) of the neutrophils to POPC-Cl or POPC-Br. These results suggest that halogenated lipids formed in vivo via MPO-dependent reactions may be considered as a new class of biologically active substances that are potentially able to contribute to the priming of myeloid cells in the sites of inflammation and serve as inflammatory response modulators.

Key words

halogenated phospholipids myeloperoxidase neutrophils priming H2O2 generation degranulation aggregation 

Abbreviations

ROS

reactive oxygen species

LDL

low-density lipoproteins

HOCl-LDL

HOCl-modified LDL

MPO

myeloperoxidase

fMLF

N-formyl-Met-Leu-Phe

GlcNAc

N-acetyl-D-glucosamine

MALDI-TOF

(matrix assisted laser desorption/ionisation time-of-flight), mass spectrometry

POPC

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

LS-POPC

liposomes formed of POPC

POPC-Cl

POPC chlorohydrins

POPC-Br

POPC bromohydrins

STA

lectin of potato tubers (Solanum tuberosum)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dale D.C., Boxer L., Liles W.C. 2008. The phagocytes: neutrophils and monocytes. Blood. 112, 935–945.CrossRefPubMedGoogle Scholar
  2. 2.
    Klebanoff S. J. 2005. Myeloperoxidase: Friend and foe. J. Leukoc. Biol. 77, 598–625.CrossRefPubMedGoogle Scholar
  3. 3.
    Baldus S., Heeschen C., Meinertz T., Zeiher A.M., Eiserich J.P., Münzel T., Simoons M.L., Hamm C.W. 2003. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation. 108, 1440–1445.CrossRefPubMedGoogle Scholar
  4. 4.
    Klebanoff S.J. 1968. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J. Bacteriol. 95, 2131–2138.PubMedGoogle Scholar
  5. 5.
    Zemskov V.M. 1984. Phagocytosis: Physiological and molecular aspects. Uspekhi sovremennoy biologii (Rus.). 98, 219–233.Google Scholar
  6. 6.
    Midwinter R.G., Vissers M.C., Winterbourn C.C. 2001. Hypochlorous acid stimulation of the mitogen-activated protein kinase pathway enhances cell survival. Arch. Biochem. Biophys. 394, 13–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Vile G.F., Rothwell L.A., Kettle A.J. 1998. Hypochlorous acid activates the tumor suppressor protein p53 in cultured human skin fibroblasts. Arch. Biochem. Biophys. 359, 51–56.CrossRefPubMedGoogle Scholar
  8. 8.
    Fu X., Kao J.L.F., Bergt C., Kassim S.Y., Huq N.P., d’Avignon A., Parks W.C., Mecham R.P., Heinecke J.W. 2004. Oxidative cross-linking of tryptophan to glycine restrains matrix metalloproteinase activity: specific structural motifs control protein oxidation. J. Biol. Chem. 279, 6209–6212.CrossRefPubMedGoogle Scholar
  9. 9.
    Nguyen-Khoa T., Massy Z.A., Witko-Sarsat V., Canteloup S., Kebede M., Lacour B., Drueke T., Descamps-Latscha B. 1999. Oxidized low-density lipoprotein induces macrophage respiratory burst via its protein moiety: A novel pathway in atherogenesis? Biochem. Biophys. Res. Commun. 263, 804–809.CrossRefPubMedGoogle Scholar
  10. 10.
    Kopprasch S., Leonhardt W., Pietzsch J., Kuhne H. 1998. Hypochlorite-modified low-density lipoprotein stimulates human polymorphonuclear leukocytes for enhanced production of reactive oxygen metabolites, enzyme secretion, and adhesion to endothelial cells. Atherosclerosis. 136, 315–324.CrossRefPubMedGoogle Scholar
  11. 11.
    Kopprasch S., Pietzsch J., Westendorf T., Kruse H.J., Grassler J. 2004. The pivotal role of scavenger receptor CD36 and phagocyte-derived oxidants in oxidized low density lipoprotein-induced adhesion to endothelial cells. Int. J. Biochem. Cell Biol. 36, 460–471.CrossRefPubMedGoogle Scholar
  12. 12.
    Vicca S., Massy Z.A., Hennequin C., Rihane D., Drueke T.B., Lacour B. 2003. Apoptotic pathways involved in U937 cells exposed to LDL oxidized by hypochlorous acid. Free Radic. Biol. Med. 35, 603–615.CrossRefPubMedGoogle Scholar
  13. 13.
    Arnhold J., Osipov A.N., Spalteholz H., Panasenko O.M., Schiller J. 2001. Effects of hypochlorous acid on unsaturated phosphatidylcholines. Free Radic. Biol. Med. 31, 1111–1119.CrossRefPubMedGoogle Scholar
  14. 14.
    Panasenko O.M., Osipov A.N., Schiller J., Arnhold J. 2002. Interaction of exogenous hypochlorite and hypochlorite produced in the MPO+H2O2+Cl system with unsaturated phosphatidylcholine. Biokhimiya (Rus.). 67, 1071–1084 [Translated version: Biochemistry (Moscow). 67, 889–900].Google Scholar
  15. 15.
    Dever G.J., Benson R., Wainwright C.L., Kennedy S., Spickett C.M. 2008. Phospholipid chlorohydrin induces leukocyte adhesion to ApoE-/- mouse arteries via upregulation of P-selectin. Free Radic. Biol. Med. 44, 452–463.CrossRefPubMedGoogle Scholar
  16. 16.
    Messner M.C., Albert C.J., McHowat J., Ford D.A. 2008. Identification of lysophosphatidylcholine-chlo rohydrin in human atherosclerotic lesions. Lipids. 43, 243–249.CrossRefPubMedGoogle Scholar
  17. 17.
    Morris J.C. 1966. The acid ionization constant of HOCl from 5°C to 35°C. J. Phys. Chem. 70, 3798–3805.CrossRefGoogle Scholar
  18. 18.
    Kumar K., Margerum D.W. 1987. Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid. Inorg. Chem. 26, 2706–2711.CrossRefGoogle Scholar
  19. 19.
    Gazda M., Margeum D.W. 1994. Reactions of monochloramine with Br2, Br3, HOBr, and OBr2: Formation of bromochloramines. Inorg. Chem. 33, 118–123.CrossRefGoogle Scholar
  20. 20.
    Timoshenko A.V., Kayser K., Gabius H.J. 1998. Lectin-triggered superoxide/H2O2 and granule enzyme release from cells. Meth. Mol. Med. 9, 441–445.Google Scholar
  21. 21.
    Timoshenko A.V., Cherenkevich S.N. 1995. H2O2 generation and aggregation of human neutrophils as affected by lectins. Gematol. Transfuziol. 40, 32–35.PubMedGoogle Scholar
  22. 22.
    Timoshenko A.V., Zorin V.P., Cherenkevich S.N. 1986. The influence of prostaglandins and inhibitors of arachidonic acid metabolism on Con A-induced agglutination of thymocytes. Abstracts of the All-Russian Symposium Synthesis and Analysis of Prostaglandins, Tallin, p. 169.Google Scholar
  23. 23.
    Timoshenko A.V., Fomichev A.Yu., Cherenkevich S.N. 1994. The effect of metabolic inhibitors on stability of mannose-specific contacts of Escherichia coli K12 and human neutrophils. Gen. Mikrobiol. Virusol. 5, 9–13.Google Scholar
  24. 24.
    Timoshenko A.V., Gorudko I.V., Cherenkevich S.N., Gabius H.J. 1999. Differential potency of two crosslinking plant lectins to induce formation of haptenic-sugar-resistant aggregates of rat thymocytes by post-binding signaling. FEBS Lett. 449, 75–78.CrossRefPubMedGoogle Scholar
  25. 25.
    Schiller J., Arnhold J., Benard S., Müller M., Reichl S., Arnold K. 1999. Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach. Anal. Biochem. 267, 46–56.CrossRefPubMedGoogle Scholar
  26. 26.
    Timoshenko A.V., Cherenkevich S.N., Samal A.B. 1986. The role of reactive oxygen species in concanavallin A-induced agglutination of lymphocytes. Vestn. Belorusskogo universiteta. Series 2, Chemistry, Biology, Geography, no. 3, 47–50.Google Scholar
  27. 27.
    Lee S., Chung J., Ha I.S., Yi K., Lee J.E., Kang H.G., Choi I., Oh K.-H., Kim J.Y., Surh C.D., Ahn C. 2007. Hydrogen peroxide increases human leukocyte adhesion to porcine aortic endothelial cells via NFkB-dependent up-regulation of VCAM-1. Int. Immunol. 19, 1349–1359.CrossRefPubMedGoogle Scholar
  28. 28.
    Nicholls S.J., Hazen S.L. 2009. Myeloperoxidase, modified lipoproteins and atherogenesis. J. Lipid Res. Suppl. 50,Suppl., S346–S351.Google Scholar
  29. 29.
    Esterbauer H., Wäg G., Puhl H. 1993. Lipid peroxidation and its role in atherosclerosis. Br. Med. Bull. 49, 566–576.PubMedGoogle Scholar
  30. 30.
    Fontana L., Giagulli C., Cominacini L., Fratta Pasini A., Minuz P., Lechi A., Sala A., Laudanna C. 2002. β2 Integrin-dependent neutrophil adhesion induced by minimally modified low-density lipoproteins is mainly mediated by F2-isoprostanes. Circulation. 106, 2434–2441.CrossRefPubMedGoogle Scholar
  31. 31.
    Dianzani C., Parrini M., Ferrara C., Fantozzi R. 1996. Effect of 4-hydroxynonenal on superoxide anion production from primed human neutrophils. Cell Biochem. Funct. 14, 193–200.CrossRefPubMedGoogle Scholar
  32. 32.
    Sethi S., Eastman A.Y., Eaton J. W. 1996. Inhibition of phagocyte-endothelium interactions by oxidized fatty acids: A natural anti-inflammatory mechanism? J. Lab. Clin. Med. 128, 27–38.CrossRefPubMedGoogle Scholar
  33. 33.
    Chen R., Chen X., Salomon R.G., McIntyre T.M. 2009. Platelet activation by low concentrations of intact oxidized LDL particles involves the PAF receptor. Arterioscler. Thromb. Vasc. Biol. 29, 363–371.CrossRefPubMedGoogle Scholar
  34. 34.
    Leitinger N., Tyner T.R., Oslund L., Rizza C., Subbanagounder G., Lee H., Shih P.T., Mackman N., Tigyi G., Territo M.C., Berliner J.A., Vora D.K. 1999. Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils. Proc. Natl. Acad. Sci. USA. 96, 12010–12015.CrossRefPubMedGoogle Scholar
  35. 35.
    Rouhanizadeh M., Hwang J., Clempus R.E., Marcu L., Lassegue B., Sevanian A., Hsiai T.K. 2005. Oxidized-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-rylcholine induces vascular endothelial superoxide production: implication of NADPH oxidase. Free Radic. Biol. Med. 39, 1512–1522.CrossRefPubMedGoogle Scholar
  36. 36.
    Malle E., Marsche G., Arnhold J., Davies M.J. 2006. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim. Biophys. Acta. 1761, 392–415.PubMedGoogle Scholar
  37. 37.
    Panasenko O.M., Vakhrusheva T.V., Vlasova I.I., Chekanov A.V., Baranov Yu.V., Sergienko V.I. 2007. Role of myeloperoxidase-mediated modification of human blood lipoproteins in atherosclerosis development. Bull. Exp. Biol. Med. 144, 428–431.CrossRefPubMedGoogle Scholar
  38. 38.
    Panasenko O.M., Spalteholz H., Schiller J., Arnhold J. 2003. Myeloperoxidase-induced formation of chlorohydrins and lysophospholipids from unsaturated phosphatidylcholines. Free Radic. Biol. Med. 34, 553–562.CrossRefPubMedGoogle Scholar
  39. 39.
    Panasenko O.M., Spalteholz H., Schiller J., Arnhold J. 2006. Leukocytic myeloperoxidase-mediated formation of bromohydrins and lysophospholipids from unsaturated phosphatidylcholines. Biokhimiya (Rus.). 71, 707–718 [Translated version: Biochemistry (Moscow). 71, 571–580].Google Scholar
  40. 40.
    Condliffe A.M., Kitchen E., Chilvers E.R. 1998. Neutrophil priming: pathophysiological consequences and underlying mechanisms. Clin. Sci. 94, 461–471.PubMedGoogle Scholar
  41. 41.
    Swain S.D., Rohn T.T., Quinn M.T. 2002. Neutrophil priming in host defense: Role of oxidants as priming agents. Antioxid. Redox Signal. 4, 69–83.CrossRefPubMedGoogle Scholar
  42. 42.
    Spickett C.M. 2007. Chlorinated lipids and fatty acids: an emerging role in pathology. Pharmacol. Ther. 115, 400–409.CrossRefPubMedGoogle Scholar
  43. 43.
    Dever G., Wainwright C.L., Kennedy S., Spickett, C.M. 2006. Fatty acid and phospholipid chlorohydrins cause cell stress and endothelial adhesion. Acta Biochim. Pol. 53, 761–768.PubMedGoogle Scholar
  44. 44.
    Marsche G., Heller R., Fauler G., Kovacevic, A., Nuszkowski A., Graier W., Sattler W., Malle E. 2004. 2-Chlorohexadecanal derived from hypochlorite-modified high-density lipoprotein-associated plasmalogen is a natural inhibitor of endothelial nitric oxide biosynthesis. Arterioscler. Thromb. Vasc. Biol. 24, 2302–2306.CrossRefPubMedGoogle Scholar
  45. 45.
    Podrez E.A., Poliakov E., Shen Z., Zhang R., Deng Y., Sun M., Finton P.J., Shan L., Gugiu B., Fox P.L., Hoff H.F., Salomon R.G., Hazen S.L. 2002. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J. Biol. Chem. 277, 38503–38516.CrossRefPubMedGoogle Scholar
  46. 46.
    Moore K.J., Freeman M.W. 2006. Scavenger receptors in atherosclerosis: Beyond lipid uptake. Arterioscler. Thromb. Vasc. Biol. 26, 1702–1711.CrossRefPubMedGoogle Scholar
  47. 47.
    Moumtzi A., Trenker M., Flicker K., Zenzmaier E., Saf R., Hermetter A. 2007. Import and fate of fluorescent analogs of oxidized phospholipids in vascular smooth muscle cells. J. Lipid Res. 48, 565–582.CrossRefPubMedGoogle Scholar
  48. 48.
    Rhode S., Grurl R., Brameshuber M., Hermetter A., Schütz G.J. 2009. Plasma membrane fluidity affects transient immobilization of oxidized phospholipids in endocytotic sites for subsequent uptake. J. Biol. Chem. 284, 2258–2265.CrossRefPubMedGoogle Scholar
  49. 49.
    Shao D., Segal A.W., Dekker L.V. 2003. Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils. FEBS Lett. 550, 101–106.CrossRefPubMedGoogle Scholar
  50. 50.
    Sitrin R.G., Emery S.L., Sassanella T.M., Blackwood R.A., Petty H.R. 2006. Selective localization of recognition complexes for leukotriene B4 and formyl-Met-Leu-Phe within lipid raft microdomains of human polymorphonuclear neutrophils. J. Immunol. 177, 8177–8184.PubMedGoogle Scholar
  51. 51.
    Carr A.C., Vissers M.C., Domigan N.M., Winterbourn C.C. 1997. Modification of red cell membrane lipids by hypochlorous acid and haemolysis by preformed lipid chlorohydrins. Redox Rep. 3, 263–271.PubMedGoogle Scholar
  52. 52.
    Gorudko I.V., Buko I.V., Cherenkevich S.N., Polonetsky L.Z., Timoshenko A.V. 2008. Lectin-induced aggregates of blood cells from patients with acute coronary syndromes. Arch. Med. Res. 39, 674–681.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • I. V. Gorudko
    • 1
  • T. V. Vakhrusheva
    • 2
  • A. V. Mukhortova
    • 1
  • S. N. Cherenkevich
    • 1
  • A. V. Timoshenko
    • 3
  • V. I. Sergienko
    • 2
  • O. M. Panasenko
    • 2
  1. 1.Department of BiophysicsBelarussian State UniversityMinskBelarus
  2. 2.Research Institute of Physico-Chemical MedicineMoscowRussia
  3. 3.Department of BiologyUniversity of Western OntarioLondonCanada

Personalised recommendations