The role of STIM1 in the receptor- and store-operated calcium influx in HEK293 cells

  • O. A. Zimina
  • V. A. Vigont
  • I. A. Pozdnjakov
  • L. N. Glushankova
  • S. V. L’vovskaja
  • A. Yu. Skopin
  • G. N. Mozhayeva
  • E. V. Kaznacheeva
Articles

Abstract

The possible role of STIM1 protein in the regulation of activity of receptor- and store-operated Ca2+ channels in non-excitable cells has been studied. Receptor- and store-operated Ca2+ influxes have been measured using the fluorescent method of detection of cytosolic Ca2+ concentration and the electrophysiological methods of whole-cell and single-channel current recordings in the control HEK293 cells and in HEK293 cells with suppressed expression of STIM1. The experiments have shown that STIM1 suppression results in a reduction of the amplitudes of both receptor- and store-operated inward calcium currents. The decrease of total Ca2+ influx of in response to an agonist or to passive depletion of calcium stores upon STIM1 suppression was due to the decrease or total absence of the activity of high-conductance channels Imax and non-selective channels Ins in HEK293 cells. A decrease in the STIM1 amount also altered the activity regulation of low-conductance Imin channels that changed from exclusively agonist-operated into store-dependent channels in HEK293 cells.

Key words

STIM1 receptor-operated influx store-operated influx calcium HEK293 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parekh, A.B. and Penner, R., Store Depletion and Calcium Influx, Physiol. Rev., 1997, vol. 77, no 4, pp. 901–930.PubMedGoogle Scholar
  2. 2.
    Putney, J.W., Jr., Broad, L.M., Braun, F.J., Lievremont, J.P., and Bird, G.S., Mechanisms of Capacitative Calcium Entry, J. Cell Sci., 2001, vol. 114, pp. 2223–2229.PubMedGoogle Scholar
  3. 3.
    Venkatachalam, K., van Rossum, D.B., Patterson, R.L., Ma, H.T., and Gill, D.L., The Cellular and Molecular Basis of Store-Operated Calcium Entry, Nat. Cell Biol., 2002, vol. 4, pp. E263–E272.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang, S.L., Yu, Y., Roos, J., Kozak, J.A., Deerinck, T.J., Ellisman, M.H., Stauderman, K.A., and Cahalan, M.D., STIM1 Is a Ca2+ Sensor That Activates CRAC Channels and Migrates from the Ca2+ Store to the Plasma Membrane, Nature, 2005, vol. 437, no 6, pp. 902–905.CrossRefPubMedGoogle Scholar
  5. 5.
    Liou, J., Kim, M.L., Heo, W.D., Jones, J.T., Myers, J.W., Ferrell, J.E., and Meyer, T., STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx, Curr. Biol., 2005, vol. 15, pp. 1235–1241.CrossRefPubMedGoogle Scholar
  6. 6.
    Dziadek, M.A. and Johnstone, L.S., Biochemical Properties and Cellular Localisation of STIM Proteins, Cell Calcium, 2007, vol. 42, no 2, pp. 123–132.CrossRefPubMedGoogle Scholar
  7. 7.
    Zimina, O.A., Glushankova, L.N., Skopin, A.Yu., Alekseenko, V.A., Vigont, V.A., Mozhayeva, G.N., and Kaznacheeva, E.V., Role of STIM1 in Calcium Input Regulation in Human Epidermoid Carcinoma A431 Cells, Dokl. RAN, 2008, vol. 420, no. 2, pp. 1–4.Google Scholar
  8. 8.
    Manji, S.S.M., Parker, N.J., Williams, R.T., Stekelenburg, L., Pearson, R.B., Dziadek, M., and Smith, P.J., STIM1: A Novel Phosphoprotein Located at the Cell Surface, Biochim. Biophys. Acta, 2000, vol. 1481, pp. 147–155.PubMedGoogle Scholar
  9. 9.
    Grynkiewicz, G., Poenie, M., and Tsien, R.Y., A New Generation of Ca2+ Indicators with Greatly Improved Fluorescence Properties, J. Biol. Chem., 1985, vol. 260, no. 6, pp. 3440–3450.PubMedGoogle Scholar
  10. 10.
    Hamill, O.P. and Sakmann, B., Multiple Conductance States of Single Acetylcholine Receptor Channels in Embryonic Muscle Cells, Nature, 1981, vol. 294, no. 5840, pp. 462–464.CrossRefPubMedGoogle Scholar
  11. 11.
    Kim, M.S., Zeng, W., Yuan, J.P., Shin, D.M., Worley, P.F., and Muallem, S., Native Store-Operated Ca2+ Influx Requires the Channel Function of Orai1 and TRPC1, J. Biol. Chem., 2009, vol. 284, pp. 9733–9741.CrossRefPubMedGoogle Scholar
  12. 12.
    Bugaj, V., Alexeenko, V., Zubov, A., Glushankova, L., Nikolaev, A., Wang, Z., Kaznacheyeva, E., Bezprozvanny, I., and Mozhayeva, G.N., Functional Properties of Endogenous Receptor- and Store-Operated Calcium Influx Channels in HEK293 Cells, J. Biol. Chem., 2005, vol. 280, pp. 16790–16797.CrossRefPubMedGoogle Scholar
  13. 13.
    Gusev, K., Glouchankova, L., Zubov, A., Kaznacheyeva, E., Wang, Z., Bezprozvanny, I., and Mozhayeva, G.N., The Store-Operated Calcium Entry Pathways in Human Carcinoma A431 Cells: Functional Properties and Activation Mechanisms, J. Gen. Physiol., 2003, vol. 122, pp. 81–94.CrossRefPubMedGoogle Scholar
  14. 14.
    Zubov, A.I., Kaznacheeva, E.V., Nikolaev, A.V., Alexeenko, V.A., Kiselyov, K., Muallem, S., and Mozhayeva, G.N., Regulation of the Miniature Plasma Membrane Ca2+ Channel Imin by Inositol 1,4,5-Trisphosphate Receptors, J. Biol. Chem., 1999, vol. 274, pp. 25983–25985.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • O. A. Zimina
    • 1
  • V. A. Vigont
    • 1
  • I. A. Pozdnjakov
    • 1
  • L. N. Glushankova
    • 1
  • S. V. L’vovskaja
    • 1
  • A. Yu. Skopin
    • 1
  • G. N. Mozhayeva
    • 1
  • E. V. Kaznacheeva
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations