Stromules: Origin, structure and functions in a plant cell

Reviews
  • 70 Downloads

Abstract

The review presents a critical analysis of experimental achievements concerning structure and peculiarities of stromules over the last years. Stromules are dynamic thin protrusions of membrane envelope from plant cell plastids. The prospects of further studies of the stromules are discussed.

Key words

stromules endoplasmatic reticulum endomembrane connections 

References

  1. 1.
    Köhler, R.H., Cao, J., Ziphel, W.R., Webb, W.W., and Hanson, M.R., Exchange of Protein Molecules through Connections between Higher Plant Plastids, Science, 1997, vol. 276, pp. 2039–2042.CrossRefPubMedGoogle Scholar
  2. 2.
    Gunning, B.E.S., Plant Cell Biology on DVD: Information for Students and a Resource for Teachers, July 2007, www.plantcellbiologyondvd.com.Google Scholar
  3. 3.
    Haberlandt, G., Die Chlorophyllkörper der Setaginellen, Flora, 1888, vol. 71, pp. 291–308.Google Scholar
  4. 4.
    Senn, G., Die Gestalts- und Lageveraunderung der Pflanzen Chromatophoren, Leipzig, Verlag, 1908.Google Scholar
  5. 5.
    Heitz, E., Untersuchungen Über den Bau der Plastiden. I. Die Gerichteten Chlorophyllscheiben der Chloroplasten, Planta, 1937, vol. 26, pp. 134–163.CrossRefGoogle Scholar
  6. 6.
    Esau, K., Anatomical and Cytological Studies on Beet Mosaic, J. Agricult. Res., 1944, vol. 69, pp.95–117.Google Scholar
  7. 7.
    Wildman, S.G., Hongladarom, T., and Honda, S.I., Chloroplasts and Mitochondria in Living Plant Cells: Cinemaphotomicrografic Studies, Science, 1962, vol. 138, pp. 434–436.CrossRefPubMedGoogle Scholar
  8. 8.
    Wildman, S.G., The Organization of Grana-Containing Chloroplasts in Relation to Location of Some Enzymatic Systems Concerned with Photosynthesis, Protein Synthesis, and Ribonucleic Synthesis, Biochem. Chloroplasts, Goodwin, T.W., Ed., London, Acad. Press, 1967, pp. 295–317.Google Scholar
  9. 9.
    Tarchevskii, I.A., Metabolism rastenii pri stresse (Plant Stress Metabolism), Kazan’, Izd. Fan, 2001.Google Scholar
  10. 10.
    Köhler, R.H. and Hanson, M.R., Plastid Tubules of Higher Plant Are Tissue-Specific and Developmentally Regulated, J. Cell Sci., 2000, vol. 113, pp. 81–89.PubMedGoogle Scholar
  11. 11.
    Tirlapur, U.K, Dahse, I., Reiss, B., Meurer, J., and Oelmüller, R., Characterization of the Activity of a Plastid-Targeted Green Fluorescent Protein in Arabidopsis, Eur. J. Cell Biol., 1999, vol. 78, pp. 233–240.PubMedGoogle Scholar
  12. 12.
    Gray, J.C., Sullian, A., Hibbert, M., and Hansen, M.R., Stromules: Mobility Protrusions and Interconnections between Plastids, Plant Biol., 2001, vol. 3, pp. 223–233.CrossRefGoogle Scholar
  13. 13.
    Kwok, E.Y. and Hanson, M.R., GFP-Labeled Rubisko and Aspartate Aminotransferase Are Present in Plastid Stromules and Traffic between Plastids, J. Exp. Bot., 2004, vol. 55, pp. 595–604.CrossRefPubMedGoogle Scholar
  14. 14.
    Natesan, S.K.A., Sillivan, J.A., and Gray, J.C., Stromules: A Characteristic Cell-Specific Feature of Plastid Morphology, J. Exp. Bot., 2005, vol. 56, pp.787–797.CrossRefPubMedGoogle Scholar
  15. 15.
    Holzinger, A., Buchner, O., Lütz, C., and Hanson, M.R., Temperature-Sensitive Formation of Chloroplast Protrusions and Stromules in Mesophyll Cells of Arabidopsis thaliona, Protoplasma, 2007, vol. 230, pp. 23–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Kühler, R.H., Schwille, P., Webb, W.W., and Hanson, M.R., Active Protein Transport through Plastid Tubules: Velocity Quantified by Fluorescence Correlation Spectroscopy, J. Cell Sci., 2000, vol. 113, pp. 3921–3930.Google Scholar
  17. 17.
    Hanson, M.R. and Sattarzaden, A., Dynamic Morphology of Plastids and Stromules in Angiosperm Plants, Plant Cell Env., 2008, vol. 31, pp. 646–657.CrossRefGoogle Scholar
  18. 18.
    Waters, M.T., Fray, R.G., and Pyke, K.A., Stromula Formation Is Dependent upon Plastids Size, Plastid Differentiation Status and the Density of Plastids within the Cell, Plant J., 2004, vol. 39, pp. 655–667.CrossRefPubMedGoogle Scholar
  19. 19.
    Arimura, S.I., Hirai, A., and Tsutsumi, N., Numerous and Highly Developed Tubular Projections from Plastids Observed in Tobacco Epidermal Cells, Plant Sci., 2001, vol. 169, pp. 449–464.CrossRefGoogle Scholar
  20. 20.
    Pyke, K.A. and Howells, C.A., Plastid and Stromules Morphogenesis in Tomato, Ann. Bot., 2002, vol. 90, pp. 559–566.CrossRefPubMedGoogle Scholar
  21. 21.
    Langeveld, S.M.J., van Wijk, R., Stuurman, N., Kijne, J.W., and de Pater, S. B-Type Granule Containing Protrusions and Interconnections between Amyloplasts in Developing Wheat Endosperm Revealed by Transmission Electron Microscopy and GFP Expression, J. Exp. Bot., 2000, vol. 51, pp. 1357–1361.CrossRefPubMedGoogle Scholar
  22. 22.
    Gunning, B.E.S., Plastid Stromules: Video Microscopy of Their Outgrowth, Retraction, Tensioning, Anchoring, Branching, Bridging, and Tip-Shedding, Protoplasma, 2005, vol. 225, pp. 33–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Stefanowska, M., Kuras, M., and Kacperska, A., Low Temperature-Induced Modifications in Cell Ultrastructure and Localization of Phenolics in Winter Oilseed Rape (Brassica napus L. var. olifera L.) Leaves, Ann. Bot., 2002, vol. 90, pp. 637–645.CrossRefPubMedGoogle Scholar
  24. 24.
    Gusev, N.A., Sostoyanie vody v rasteniyakh (Water State in Plants), Moscow, Nauka, 1974.Google Scholar
  25. 25.
    Kwok, E. and Hanson, M.R., Microfilaments and Microtubules Control the Morphology and Movement of Non-Green Plastids and Stromules in Nicotiana tabacum, Plant J., 2003, vol. 35, pp. 16–26.CrossRefPubMedGoogle Scholar
  26. 26.
    Malec, P., Rinalgi, R.A., and Gabrys, H., Light-Induced Chloroplast Moverment in Limna trisulca. Identification of the Motile System, Plant Sci., 1996, vol. 120, pp. 127–137.CrossRefGoogle Scholar
  27. 27.
    Wang, Z.Y. and Pesacreta, T.C., A Subclass of Myosin XI Is Accosiated with Mitochondria, Plastids, and the Molecular Chaperone Subunit TCP-la in Maize, Cell Motil. Cytoskeleton, 2004, vol. 57, pp. 218–232.CrossRefPubMedGoogle Scholar
  28. 28.
    Yokota, E., Sonobe, S., Orli, H., Yuasa, T., Inada, S., and Shimmen, T., The Type and the Localization of 175 kDa Myosin in Tobacco Cultured Cell BY-2, J. Plant Res., 2001, vol. 114, pp. 115–116.CrossRefGoogle Scholar
  29. 29.
    Holweg, C. and Nick, P., Arabidopsis Myosin XI Mutant Is Defective in Organelle Movement and Polar Auxin Transport, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 10488–10493.CrossRefPubMedGoogle Scholar
  30. 30.
    Kwok, E., and Hanson, M.R., Stromules and the Dynamic Nature of Plastid Morphology, J. Microsc., 2004, vol. 214, pp. 124–137.CrossRefPubMedGoogle Scholar
  31. 31.
    Spacek, J. and Lieberman, A.R., Relationships between Mitochondrial Outer Membranes and Agranular Reticulum in Nervous Tissue: Ultrastructural Observations and a New Interpretation, J. Cell Sci., 1980, vol. 46, pp. 129–147.PubMedGoogle Scholar
  32. 32.
    Hawes, Ch., Sain-Jore, C.M., Brandizzi, F., Zheng, H., Andreeva, A.V., and Boevink, P., Cytoplasmic Illuminations: in Planta Targeting of Fluorescent Proteins to Cellular Organelles, Protoplasma, 2001, vol. 215, pp. 77–88.CrossRefPubMedGoogle Scholar
  33. 33.
    Faminitzin, A.S., O roli simbioza v evolutsii organizmov (Symbiosis in Evolution of Organisms), Tr. Imp. Acad. Nauk, Phys-Math. Otd., 1907, vol. 20, pp. 3–35.Google Scholar
  34. 34.
    Merezkovskii, K.S., Teoria dvuh plasm kak osnova simbiogenesa i novogo ucheniya o proiskhozdenii organizmov (Two-Plasma Theory As the Base of Symbiogenesis and New Concept of Organism Origin), Kazan’, 1909.Google Scholar
  35. 35.
    Gamalei, Yu.V., Supercellular Plant Structure, Fisiologiya Rasteniy (Rus.), 1997. vol. 44, no. 6, pp. 819–846.Google Scholar
  36. 36.
    Gamalei, Yu.V., Transportnaya sistema sosudistikh rasteniy (Transport System in Vascular Plants), St.-Petersburg, St.-Petersburg Univ. Publishing, 2004.Google Scholar
  37. 37.
    Gamalei, Yu.V., The Dynamic Network of Plastids and Mitochondria in Plant Cells, Tsitologia (Rus.), 2006, vol. 48, no. 4, pp. 271–282.Google Scholar
  38. 38.
    Hepler, P.K. and Gunning, B.E.S., Confocal Fluorescence Microscopy of Plant Cells, Protoplasma, 1998, vol. 201, pp. 121–157.CrossRefGoogle Scholar
  39. 39.
    Koning, A.J., Lum, P.Y., Williums, J.M., and Wright, R., DiOC-6 Staining Reveals Organelle Structure and Dynamics in Living Yeast Cells, Cell Motil. Cytoskeleton, 1993, vol. 25, pp. 111–128.CrossRefPubMedGoogle Scholar
  40. 40.
    Leibe, S. and Menzel, D., Actomyosin-Based Motility of Endoplasmic Reticulum and Chloroplasts in Vallisneria Mesophyll Cells, Biol. Cell., 1995, vol. 85, pp. 207–222.CrossRefGoogle Scholar
  41. 41.
    Robards, A.W., Plasmodesmata in Higher Plants, Intercellular Communications in Plants: Studies on Plasmodesmata, Gunning, B.E.S. and Robards, A.W., Eds., Berlin, Springer, 1976, pp. 15–53.Google Scholar
  42. 42.
    Velikanov, G.A., Volobueva, O.V., Belova, L.P., and Gaponenko, E.M., Vacuolar Symplast As Regulated Way of Water Exchange in Plants, Fisiol. Rastenii (Rus.), 2005, vol. 52, no. 3, pp. 372–377.Google Scholar
  43. 43.
    Velikanov, G.A., Vacuolar Symplast and Methodology for Parameter Control of Water Self-Diffusion between Vacuoles of Neighboring Cells in Root, Fisiol. Rastenii (Rus.), 2007, vol. 54, no. 5, pp. 770–780.Google Scholar
  44. 44.
    Velikanov, G.A., Belova, L.P., and Levanov, V.Yu., Vacuolar Symplast Formation Is Due to Highly Permeable Gap Junction between the Tonoplast and Endoplasmic Reticulum Membrane, Russ. J. Plant Phys., 2008, vol.55, no.6, pp.834–842.CrossRefGoogle Scholar
  45. 45.
    Arkhipenko, V.I., Gerbil’skii, L.V., Chernenko, U.P., and Chuich, G.A., Structure and Functions of Intercellular Contacts, Structura i funktsii biologicheskih membran (Structure and Functions of Biological Membranes), Troshina, A.S., et al., Edt., Moscow, Nauka, 1975, pp.77–95.Google Scholar
  46. 46.
    Safranyost, R.G. and Caveney, S., Rates of Diffusion of Fluorescent Molecules via Intercellular Membrane Channels, J. Cell Biol., 1983, vol. 97, no. 5, pt. 2, p. 82.Google Scholar
  47. 47.
    Berkinblit, M.B., Bozkova, V.P., Boytsova, L.U., Mitel’man, L.A., Potapova, T.V., Chailakhjan, L.M., and Sharovskaia, U.U., Visokopronitsaemye kontaktnye membrany (Highly Permeable Contact Membranes), Moscow, Nauka, 1981.Google Scholar
  48. 48.
    Yahalom, A., Maize Mesocotyl Plasmodesmata Proteins Cross-React with Connexin Gap Junction Protein Antibodies, Plant Cell, 1991, vol. 3, pp. 407–417.CrossRefPubMedGoogle Scholar
  49. 49.
    Meiners, S., Xu, A., and Schindler, M., Gap Junction Protein Homoloque from Arabidopsis thaliana: Evidence for Connexin in Plants, Proc. Natl. Acad. Sci. USA, 1991, vol. 88, no. 10, pp. 4119–4122.CrossRefPubMedGoogle Scholar
  50. 50.
    Abdrakhimov, F.A., Batasheva, S.N., Bakirova, G.G., and Chikov, V.I., Dynamics of Ultrastructure Alterations of Lamina of Long-Fibred Flax at Decreasing of Assimilates Transport Cased by Nitrate Anion, Tsitologiya (Rus.), 2008, vol. 50, no. 8, pp. 700–710.Google Scholar
  51. 51.
    Ponomareva, A.A. and Poligalova, O.O., Effect of High Concentration of Protonofor on the Structure and Function of Cells of Wheat Roots, Tsitologiya (Rus.), 2006, vol. 48, no. 3, pp. 199–207.Google Scholar
  52. 52.
    Kwok, E.Y. and Hanson, M.R., Plastid and Stromules Interact with the Nucleus and Cell Membrane in Vascular Plants, Plant Cell Rep., 2004, vol. 23, pp. 188–195.CrossRefPubMedGoogle Scholar
  53. 53.
    Kursanov, A.L., Transport assimilyatov v rastenii (Transport of Assimilates in the Plant), Moscow, Nauka, 1976.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Kazan Institute of Biochemistry and Biophysics of Kazan Scientific CentreRussian Academy of SciencesKazanRussia

Personalised recommendations