Allosteric modulation of the [3H]quinuclidinyl benzylate binding to M-cholinoreceptors in rat cerebral cortex by adrenotropic agents

Article

Abstract

The allosteric effects of adrenotropic drugs and the membranotropic agent cocaine on the kinetics of [3H]quinuclidinyl benzylate ([3H]QNB) binding to muscarine cholinoceptors of synaptosomal membranes of rat cerebral cortex were studied. In control, the best results were obtained for the model that assumes the existence of two receptor pools (with high and low affinity) with calculated parameters of the activity (K d), amount (B max), and mono- to dimer receptors ratio (n). For the high-affinity receptors these parameters were K d1 = 0.18 ± 0.08 nM, B m1 = 221.2 ± 56.7 fmol/mg protein, n 1 = 2, and for low-affinity receptors, K d2 = 1.33 ± 0.11 nM, B m2 = 748.7 ± 53.3 fmol/mg protein, n 2 = 2. Allosteric modulation of the activity of specific neurotransmitter receptors can be accomplished by changing the receptor affinity and amount as well as the proportion of mono- and dimer receptors. Under control conditions, muscarine receptors exist as dimers. In the presence of α-adrenoreceptor agonist noradrenaline and β-adrenoreceptor antagonist propranolol, only one pool of the dimer muscarine receptors remains. The number of binding sites for noradrenaline and propranolol decreases approximately by 40% and 20%, respectively. The agonist of α2-adrenoreceptors clonidine, the antagonist of α2-adrenoreceptors yohimbine, and a membranotropic agent cocaine change the ligand binding so that only one receptor pool remains but some of the dimer receptors become monomeric (1 < n < 2). The amount of binding sites reduces by 20%, 25%, and 45% for clonidine, yohimbine, and cocaine, respectively.

Key words

[3H]quinuclidinyl benzylate binding muscarine cholinoreceptors synaptosomal membranes of rat cerebral cortex receptor pools dimers monomers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, D.G., Don, H.F., and Brown, J.K., α-Adrenergic and Muscarinic Cholinergic Inhibition of ACh Release in Guinea Pig Trachea: Role of Neuronal K+ Channels, Am. J. Physiol., 1994, vol. 266, no. 6 (part 1), pp. 698–704.Google Scholar
  2. 2.
    Schramm, C.M., Arjona, N.C., and Grunstein, M.M., Role of Muscarinic M2 Receptors in Regulating β-Adrenergic Responsiveness in Maturing Rabbit Airway Smooth Muscle, Am. J. Physiol., 1995, vol. 269, pp. 783–790.Google Scholar
  3. 3.
    Manukhin, B.N., Nesterova, L.A., and Smurova, E.A., Effects of the α1-Adrenoreceptor Agonist Methoxamine, the M-Cholinoreceptor Antagonist Atropine, and the Membranotropic Agent Cocaine on the Binding of [3H]Dihydroalprenolol to α-Adrenoreceprors on Rat Red Blood Cells, Biologicheskie membrany (Rus.), 2001, vol. 18, no. 4, pp. 277–282.Google Scholar
  4. 4.
    Manukhin, B.N. and Nesterova, L.A., The Kinetics of the Reaction of the Rat Portal Vein Responses to Catecholamine and Acetylcholine, Fiziol. Zhurnal im. Sechenova (Rus.), 1994, vol. 80, no. 2, pp. 68–76.Google Scholar
  5. 5.
    Henn, S.W. and Henn, F.A., The Identification of Subcellular Fractions of the Central Nervous System, Handbook of Neurochemistry, Lajtha, A., Ed., N.Y., London, Plenum Press, 1982, pp. 147–161.Google Scholar
  6. 6.
    Manukhin, B.N., Smurova, E.A., and Nesterova, L.A., Characteristics of Binding of Specific Antagonist [3H] Quinuclidinyl Benzylate by M-Cholinoreceptors in Rat Cerebral Cortex, DAN (Rus.), 1995, vol. 343, no. 2, pp. 268–271.Google Scholar
  7. 7.
    Lowry, O.H., Rosenbrough, N.J., Farr, A L., and Randall, R.I.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 1951, vol. 193, pp. 265–275.PubMedGoogle Scholar
  8. 8.
    Manukhin, B.N., Nesterova, L.A., and Smurova, E.A., Characteristics of the Kinetics of Interaction between β-Adrenoreceptors of Rat Erythrocytes and a Specific Blocker Propranolol, Membr. And Cell Biol., 1995, vol. 8, pp. 485–489.Google Scholar
  9. 9.
    Manukhin, B.N., Nesterova, L.A., Smurova, E.A., and Kichikulova, T.P., An Approach to Analysis of Rradiolabeled Ligand Interaction with Specific Rreceptors, Eur. J. Pharmacol., 1999, vol. 366, nos. 2–3, pp. 279–288.CrossRefGoogle Scholar
  10. 10.
    Dixon, M. and Webb, A., Fermenty (Enzymes), Mir, Moscow, 1982, vol. 3.Google Scholar
  11. 11.
    Keleti, T., Osnovy fermentativnoi kinetiki (Basics of Enzyme Kinetics), Mir, Moscow, 1990.Google Scholar
  12. 12.
    Hill, A.V., The Possible Effects of the Aggregation of the Molecules of Hemoglobin on Its Dissociation Curves, J. Physiol., 1910, vol. 40, Proceed. Physiol. Soc., pp. iv–vii.Google Scholar
  13. 13.
    Berezov, T.T. and Korovkin, B.F., Biologicheskaya Khimiya (Biological Chemistry), Meditsyna, Moscow, 2007.Google Scholar
  14. 14.
    Avdonin, P.V., Structure and Signaling Properties of G-Protein-Coupled Receptor Complexes. Biologicheskie membrany (Rus.), 2005, vol. 22, no. 1, pp. 3–26.Google Scholar
  15. 15.
    Uberti, M.A., Hall, R.A., and Minneman, K.P., Subtipespecific Dimerization of α1-Adrenoceptors: Effects on Receptor Expression and Pharmacological Properties, Mol. Pharmacol., 2003, vol. 64, no. 6, pp. 1379–1390.PubMedCrossRefGoogle Scholar
  16. 16.
    Small, K.M., Schwarb, M.R., Glinka, C., Theiss, C.T., Brown, K.M., Seman, C.A., and Liggett, S.B., α2A- and α2C-Adrenergic Receptors form Homo- and Heterodimers: The Heterodimeric State Impairs Agonistpromoted GRK Phosphorylation and β-Arrestin Recruitment, Biochemistry, 2006, vol. 45, no. 15, pp. 4760–4767.PubMedCrossRefGoogle Scholar
  17. 17.
    Hague, C., Lee, S.E., Chen, Z., Prinster, S.C., Hall, R.A., and Minneman, K.P., Heterodimers of α1B- and α1D-Adrenergic Receptors form a Single Functional Entity, Mol. Pharmacol., 2006, vol. 69,no. 1, pp. 45–55.PubMedGoogle Scholar
  18. 18.
    Nobles, M., Benians, A., and Tinker, A., Heterotrimeric G Proteins Precouple with G Protein-coupled Receptors in Living Cells, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 51, pp. 18706–18711.PubMedCrossRefGoogle Scholar
  19. 19.
    Trankle, C., Mies-Klomfass, E., Botero Cid, M.H., Holzgrabe, U., and Mohr, K., Identification of a [3H]Ligand for the Common Allosteric Site of Muscarinic Acetylcholine M2 Receptors, Mol. Pharmacol., 1998, vol. 54,no. 1, pp. 139–145.PubMedGoogle Scholar
  20. 20.
    Tucek, A., Jakubik, J., Dolezal, V., and El-Fakahany, E.E., Positive Effects of Allosteric Modulators on the Binding Properties and the Function of Muscarinic Acetylcholine Receptors, J. Physiol. (Paris), 1998, vol. 92, nos. 3–4, pp. 241–243.CrossRefGoogle Scholar
  21. 21.
    Holzgrabe, U., de Amici, M., and Mohr, K., Allosteric Modulators and Selective Agonists of Muscarinic Receptors, J. Mol. Neurosci. 2006, vol. 30, nos. 1–2, pp. 165–168.PubMedCrossRefGoogle Scholar
  22. 22.
    Christopoulos, A., Lansafame, A., and Mitchelson, F., Allosteric Interaction at Muscarinic Cholinoceptors, Clin. Exp. Pharm. Physiol., 1998, vol. 25, pp. 185–194.CrossRefGoogle Scholar
  23. 23.
    Birdsall, N.J.H., Farries, T., Charagozloo, P., Kobayashi, S., Lazareeno, S., and Sugimoto, M., Subtype-selective Positive Cooperative Interactions between Brucine Analogs and Acetylcholine at Muscarinic Receptors: Functional Studies, Mol. Pharmacol., 1999, vol. 55, no. 4, pp. 778–786.PubMedGoogle Scholar
  24. 24.
    Yu, X.C., Wang, H.X., Zhang, W.N., and Wong, T.M.J., Cross-talk between Cardiac κ-Opioid and β-Adrenergic Receptors in Developing Hypertensive Rats, J. Mol. Cell Cardiol., 1999, vol. 31, no. 3, pp. 597–605.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations