How erythrocyte volume is regulated, or what mathematical models can and cannot do for biology

  • F. I. Ataullakhanov
  • N. O. Korunova
  • I. S. Spiridonov
  • I. O. Pivovarov
  • N. V. Kalyagina
  • M. V. Martinov
Article

Abstract

Modern concepts of the red blood cell (RBC) volume regulation are considered. It is shown that the system of ion pumps and channels in the cell membrane ensures the physiological value of volume with a precision of about 10% even at 5- to 7-fold variations of passive membrane permeability for ions. Particular attention is paid to mathematical models for evaluation of the role of different molecular mechanisms in the RBC volume control. It is shown that many questions, for example, ‘why the Na+,K+-ATPase pumps the ions in opposite directions’ or ‘what is the physiological role of Ca2+-activated K+-channels’, cannot be answered without adequate mathematical models of such complex control systems as cell volume control.

Key words

red blood cell Na+,K+-pump Ca2+-activated K+-channels cell volume mathematical models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Human Physiology, Schmidt, R. and Tews, G., Eds., Moscow, Mir, 1996, vol. 1.Google Scholar
  2. 2.
    Boldyrev, A.A. and Tverdislov, V.A., Molecular Organization and Mechanism of the Functioning of Na-Pump, Blumenfel’d, L.A., Ed., Moscow, VINITI, 1978.Google Scholar
  3. 3.
    Boldyrev, A.A., Biologicheskie membrany i ionnyi transport (Biological Membranes and Ion Transport), Moscow, Izd. MGU, 1985.Google Scholar
  4. 4.
    Boldyrev, A.A., Lopina, O.D., Rubtsov, A M., and Svinukhova, I.A., Biokhimiya aktivnogo ionnogo transporta i transportnye ATFazy (Biochemistry of Active Ion Transport and Transport ATPases), Moscow, Izd. MGU, 1983.Google Scholar
  5. 5.
    Boldyrev, A.A., Kotelevtsev, S.V., Lanio, M., Alvares, K., and Peres, P., Vvedenie v membranologiyu (Introduction to Membranology), Moscow, Izd. MGU, 1990.Google Scholar
  6. 6.
    Hodgkin, A.L. and Huxley, A.F., Action Potentials Recorded from Inside a Nerve Fiber, Nature, 1939, vol. 144, pp. 710–711.CrossRefGoogle Scholar
  7. 7.
    Hodgkin, A.L. and Huxley, A.F., Currents Carried by Sodium and Potassium Ions through the Membrane of the Giant Axon of Loligo, J. Physiol., 1952, vol. 116, no. 4, pp. 449–472.PubMedGoogle Scholar
  8. 8.
    Hodgkin, A.L., Ionic Movements and Electrical Activity in Giant Fibers, Proc. Royal Soc. (London), 1958, vol. B148, pp. 1–37.CrossRefGoogle Scholar
  9. 9.
    Hodgkin, A., Nervous Impulse, Moscow, Mir, 1965.Google Scholar
  10. 10.
    Kahlenberg, A., Urman, B., and Dolansky, D., Preferential Uptake of D-Glucose by Isolated Human Erythrocyte Membranes, Biochemistry, 1971, vol. 10, no. 16, pp. 3154–3162.PubMedCrossRefGoogle Scholar
  11. 11.
    Jacobs, R.L., Stead, L.M., Brosnan, M.E., and Brosnan, J.T., Hyperglucagonemia in Rats Results in Decreased Plasma Homocysteine and Increased Flux through the Transsulfuration Pathway in Liver, J. Biol. Chem., 2001, vol. 276, no. 47, pp. 43740–43747.PubMedCrossRefGoogle Scholar
  12. 12.
    Kilberg, S.M., Handlogten, M.E., and Christensen, H.N., Characteristics of an Amino Acid Transport System in Rat Liver for Glutamine, Asparagines, Histidine, and Closely Related Analogs, J. Biol. Chem., 1980, vol. 255, no. 9, pp. 4011–4019.PubMedGoogle Scholar
  13. 13.
    Tosteson, D.C., Halide Transport in Red Blood Cells, Acta Physiol. Scand., 1959, vol. 46, pp. 19–41.CrossRefGoogle Scholar
  14. 14.
    Tosteson, D.C. and Hoffman, J.F., Regulation of Cell Volume by Active Cation Transport in High and Low Potassium Sheep Red Cells, J. Gen. Physiol., 1960, vol. 44, pp. 169–194.PubMedCrossRefGoogle Scholar
  15. 15.
    Jakobsson, E., Interactions of Cell Volume, Membrane Potential, and Membrane Transport Parameters, Amer. J. Physiol., 1980, vol. 238, no. 5, pp. C196–C206.PubMedGoogle Scholar
  16. 16.
    Ataullakhanov, F.I., Regulation of Metabolism in Red Blood Cells, Doctoral (Biology) Dissertation, Moscow, Institute of Biophysics, Ac. Sci. USSR, 1983.Google Scholar
  17. 17.
    Werner, A. and Heinrich, R., A Kinetic Model for the Interaction of Energy Metabolism and Osmotic States of Human Erythrocytes. Analysis of the Stationary “in vivo” State and of Time Dependent Variations under Blood Preservation Conditions, Biomed. Biochim. Acta, 1985, vol. 44, no. 2, pp. 185–212.PubMedGoogle Scholar
  18. 18.
    Lew, V.L. and Bookchin, R.M., Volume, pH, and Ion-Content Regulation in Human Red Cells: Analysis of Transient Behavior with an Integrated Model, J. Membr. Biol., 1986, vol. 92, no. 1, pp. 57–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Moroz, I.A., Ataullakhanov, F.I., Pichugin, A.V., Kiyatkin, A.B., and Vitvitsky, V.M., Mathematical Model of Regulation of Red Blood Cell Volume, Biol. Membrany (Rus.), 1989, vol. 6, pp. 409–419.Google Scholar
  20. 20.
    Ataullakhanov, F.I., Vitvitsky, V.M., Kiyatkin, A.B., and Pichugin, A.V., Regulation of the Volume of Human Red Blood Cells. The Role of Calcium-Activated Potassium Channels, Biofizika (Rus.), 1993, vol. 38, pp. 809–821.Google Scholar
  21. 21.
    Martinov, M.V., Vitvitsky, V.M., and Ataullakhanov, F.I., Volume Stabilization in Human Erythrocytes: Combined Effects of Ca2+-Dependent Potassium Channels and Adenylate Metabolism, Biophys. Chem., 1999, vol. 80, no. 3, pp. 199–215.PubMedCrossRefGoogle Scholar
  22. 22.
    Hodgkin, A.L. and Huxley, A.F., A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve, J. Physiol., 1952, vol. 117, no.4, pp. 500–544.PubMedGoogle Scholar
  23. 23.
    Skou, J.C., The Influence of Some Cations on an Adenosine Triphosphatase from Peripheral Nerves, Biochim. Biophys. Acta, 1957, vol. 23, no. 2, pp. 394–401.PubMedCrossRefGoogle Scholar
  24. 24.
    Kotyk, A. and Yanachek, K., Membrannyi transport (Membrane Transport), Moscow, Mir, 1980.Google Scholar
  25. 25.
    Post, R.L., Merritte, C.R., Kinsolving, C.R., and Albright, C.D., Membrane Adenosine Triphosphatase As a Participant in the Active Transport of Sodium and Potassium in the Human Erythrocyte, J. Biol. Chem., 1960, vol. 235, pp. 1796–1802.PubMedGoogle Scholar
  26. 26.
    Marchesi, V.T., Furthmayr, H., and Tomita, M., The Red Cell Membrane, Annu. Rev. Biochem., 1976, vol. 45, pp. 667–698.PubMedCrossRefGoogle Scholar
  27. 27.
    Tosteson, D.C., The Cellular Functions of Active Transport of K and Na, Physiol. Pharmacol. Physicians, 1965, vol. 3, no. 10, pp. 1–6.PubMedGoogle Scholar
  28. 28.
    Hoffman, P.G. and Tosteson, D.C., Active Sodium and Potassium Transport in High Potassium and Low Potassium Sheep Red Cells, J. Gen. Physiol., 1971, vol. 58, no. 4, pp. 438–466.PubMedCrossRefGoogle Scholar
  29. 29.
    Tosteson, D.C., Active Transport, Genetics, and Cellular Evolution, Fed. Proc., 1963, vol. 22, pp. 19–26.PubMedGoogle Scholar
  30. 30.
    Guharay, F. and Sachs, F., Stretch-Activated Single Ion Channel Currents in Tissue-Cultured Embryonic Chick Skeletal Muscle, J. Physiol., 1984, vol. 352, pp. 685–701.PubMedGoogle Scholar
  31. 31.
    Gennis, R., Biomembrany. Molekuliarnaya struktura i funktsii (Biomembranes. Molecular Structure and Functions), Moscow, Mir, 1997.Google Scholar
  32. 32.
    White, A., Handler, F., Smith, E., Hill, R., and Lehman, I., Osnovy biokhimii (Bases of Biochemistry), Moscow, Mir, 1981.Google Scholar
  33. 33.
    Beutler, E., Red Cell Metabolism, N.Y., Grune & Stratton, 1975.Google Scholar
  34. 34.
    Jacobash, G.S., Minakami, S., and Rapoport, S.M., Cellular and Molecular Biology of Erythrocytes, Yoshikawa, J. and Rapoport, S.M., Eds., Tokyo, University of Tokyo Press, 1974, pp. 55–142.Google Scholar
  35. 35.
    Evans, E.A. and Skalak, R., Mechanics and the Thermodynamics of Biomembranes, Boca Raton, Fl., Crc Press, 1980.Google Scholar
  36. 36.
    Markin, V.S., Membrane Organization in the Layer Plane and Cell Shape. Biological Consequences of the Theory, Biofizika (Rus.), 1981, vol. 26, no. 1, pp. 158–167.Google Scholar
  37. 37.
    Rapoport, S.M., The Regulation of Glycolysis in Mammalian Erythrocytes, Essays Biochem., 1968, vol. 4, pp. 69–103.PubMedGoogle Scholar
  38. 38.
    Rapoport, S.M. and Muller, M., Cellular and Molecular Biology of Erythrocytes, Yoshikawa, J. and Rapoport, S.M., Eds., Tokyo, University of Tokyo Press, 1974, pp. 167–179.Google Scholar
  39. 39.
    Grimes, A.G., Human Red Cell Metabolism, Oxford, Blackwell, 1980.Google Scholar
  40. 40.
    Lionetti, F.J., Cellular and Molecular Biology of Erythrocytes, Yoshikawa, J. and Rapoport, S.M., Eds., Tokyo, University of Tokyo Press, 1974, pp. 143–166.Google Scholar
  41. 41.
    Kilmartin, J.V. and Rossi-Barnardi, L., Interaction of Hemoglobin with Hydrogen Ions, Carbon Dioxide, and Organic Phosphates, Physiol. Rev., 1973, vol. 53, pp. 836–890.PubMedGoogle Scholar
  42. 42.
    Mohandas, N., Chasis, J.A. and Shohet, S.B., The Influence of Membrane Skeleton on Red Cell Deformability, Membrane Material Properties, and Shape, Semin. Hematol., 1983, vol. 20, pp. 225–242.PubMedGoogle Scholar
  43. 43.
    Mueller, T.J., Jackson, C.W., Dokter, M.E., and Morrison, M., Membrane Skeletal Alterations during in vivo Mouse Red Cell Aging. Increase in the Band 4.1a:4.1b Ratio, J. Clin. Invest., 1987, vol. 79, pp. 492–499.PubMedCrossRefGoogle Scholar
  44. 44.
    Markin, V.S., Lateral Organization of Membranes and Cell Shapes, Biophys. J., 1981, vol. 36, no. 1, pp. 1–19.PubMedCrossRefGoogle Scholar
  45. 45.
    Glaser, R. and Leitmannova, A., Mathematical Modelling of Shape-Transformations of Human Erythrocytes, Acta. Biol. Med. Ger., 1977, vol. 36, nos. 5–6, pp. 859–869.PubMedGoogle Scholar
  46. 46.
    Leitmannova, A. and Glaser, R., Mathematical Modelling of Human Echinocytes and the Membrane Bending of Discocytes Stomatocytes and Echinocytes, Studia Biophysica, 1977, vol. 64, no. 2, pp. 123–141.Google Scholar
  47. 47.
    Fung, Y.C., Tsang, W.C., and Patitucci, P., High-Resolution Data on the Geometry of Red Blood Cells., Biorheology, 1981, vol. 18, nos. 3–6, pp. 369–385.PubMedGoogle Scholar
  48. 48.
    Canham, P.B. and Burton, A.C., Distribution of Size and Shape in Populations of Normal Human Red Cells, Circ. Res., 1968, vol. 22, no. 3, pp. 405–422.PubMedGoogle Scholar
  49. 49.
    Waugh, R.E. and Sarelius, I.H., Effects of Lost Surface Area on Red Blood Cells and Red Blood Cell Survival in Mice, Am. J. Physiol., 1996, vol. 271, no. 6, Pt 1, pp. C1847–C1852.PubMedGoogle Scholar
  50. 50.
    Clark, M.R., Computation of the Average Shear-Induced Deformation of Red Blood Cells As a Function of Osmolality, Blood Cells, 1989, vol. 15, no. 2, pp. 427–439.PubMedGoogle Scholar
  51. 51.
    Linderkamp, O. and Meiselman, H.J., Geometric, Osmotic, and Membrane Mechanical Properties of Density-Separated Human Red Cells, Blood, 1982, vol. 59, no. 6, pp. 1121–1127.PubMedGoogle Scholar
  52. 52.
    Nash, G.B., O’Brien, E., Gordon-Smith, E.C., and Dormandy, J.A., Abnormalities in the Mechanical Properties of Red Blood Cells Caused by Plasmodium falciparum, Blood, 1989, vol. 74, no. 2, pp. 855–861.PubMedGoogle Scholar
  53. 53.
    Marvel, J.S., Sutera, S.P., Krogstad, D.J., Zarkowsky, H.S., and Williamson, J.R., Accurate Determination of Mean Cell Volume by Isotope Dilution in Erythrocyte Populations with Variable Deformability, Blood Cells, 1991, vol. 17, no. 3, pp. 497–512.PubMedGoogle Scholar
  54. 54.
    Paulitschke, M. and Nash, G.B., Micropipette Methods for Analyzing Blood Cell Rheology and Their Application to Clinical Research, Clin. Hemorheol., 1993, vol. 13, pp. 407–434.Google Scholar
  55. 55.
    Weed, R.J. and Reed, C.F., Metabolic Dependence of Red Cell Deformability, Amer. J. Med., 1966, vol. 41, pp. 681–698.PubMedCrossRefGoogle Scholar
  56. 56.
    Whittam, R. and Ager, M.E., Vectorial Aspects of Adenosine-Triphosphatase Activity in Erythrocyte Membranes, Biochem. J., 1964, vol. 93, pp. 337–348.PubMedGoogle Scholar
  57. 57.
    Gamble, J.L., Chemical Anatomy, Physiology and Extracellular Fluid, 6th Ed. Cambridge, Mass., Harvard University Press, 1954.Google Scholar
  58. 58.
    Klausner, M.A., Hirsch, L.J., Leblond, P.F., Chamberlain, J.K., Klemperer, M.R., and Segel, G.B., Contrasting Splenic Mechanisms in the Blood Clearance of Red Blood Cells and Colloidal Particles, Blood, 1975, vol. 46, no. 6, pp. 965–976.PubMedGoogle Scholar
  59. 59.
    Chen, L.T. and Weiss, L., The Role of the Sinus Wall in the Passage of Erythrocytes through the Spleen, Blood, 1973, vol. 41, no. 4, pp. 529–537.PubMedGoogle Scholar
  60. 60.
    Markin, V.S. and Chizmadzhev, Yu.A., Indutsirovannyi ionnyi transport (Induced Ion Transport), Moscow, Nauka, 1974, pp. 38–45.Google Scholar
  61. 61.
    Vereninov, A.A. and Marakhova, I.I., Transport ionov u kletok v kul’ture (Ion Transport in the Cell in Culture), Leningrad, Nauka, 1986.Google Scholar
  62. 62.
    Knauf, P.A., Fuhrmann, G.F., Rothstein, S., and Rothstein, A., The Relationship between Anion Exchange and Net Anion Flow across the Human Red Blood Cell Membrane, J. Gen. Physiol., 1977, vol. 69, no. 3, pp. 363–386.PubMedCrossRefGoogle Scholar
  63. 63.
    Raftos, J.E. and Lew, V.L., Effect of Intracellular Magnesium on Calcium Extrusion by the Plasma Membrane Calcium Pump of Intact Human Red Cells, J. Physiol., 1995, vol. 489, pt. 1, pp. 63–72.PubMedGoogle Scholar
  64. 64.
    Rothstein, A., Cabantchik, Z.I., and Knauf, P., Mechanism of Anion Transport in Red Blood Cells: Role of Membrane Proteins, Fed. Proc., 1976, vol. 35, no. 1, pp. 3–10.PubMedGoogle Scholar
  65. 65.
    Cabantchik, Z.I., Knauf, P.A., and Rothstein, A., The Anion Transport System of the Red Blood Cell. The Role of Membrane Protein Evaluated by the Use of ‘Probes’, Biochim. Biophys. Acta, 1978, vol. 515, no. 3, pp. 239–302.PubMedGoogle Scholar
  66. 66.
    Sen, A.K. and Post, R.L., Stoichiometry and Localization of Adenosine Triphosphate-Dependent Sodium and Potassium Transport in the Erythrocyte, J. Biol. Chem., 1964, vol. 239, pp. 345–352.PubMedGoogle Scholar
  67. 67.
    Bonting, S.L., Membranes and Ion Transport, Bittar, E.E., Ed., London, Wiley Interscience, 1970, vol. 1, pp. 257–363.Google Scholar
  68. 68.
    Robinson, J.D., Free Mg2+ and Proposed Isomerizations of the (Na+ Plus K+)-Dependent ATPase, FEBS Lett., 1974, vol. 47, no. 2, pp. 352–355.PubMedCrossRefGoogle Scholar
  69. 69.
    Kennedy, B.G., Lunn, G., and Hoffman, J.F., Effects of Altering the ATP/ADP Ratio on Pump-Mediated Na/K and Na/Na Exchanges in Resealed Human Red Blood Cell Ghosts, J. Gen. Physiol., 1986, vol. 87, no. 1, pp. 47–72.PubMedCrossRefGoogle Scholar
  70. 70.
    Ataullakhanov, F.I., Buravtsev, V.N., Vitvitsky, V.M., Dibrov, B.F., Zhabotinsky, A.M., Pichugin, A.V., Kholodenko, B.N., and Ehrlich, L.I., The Association between the Rate of ATP-Consuming Processes and ATP Concentration in Intact Red Blood Cells, Biokhimiya (Rus.), 1980, vol. 45, pp. 1075–1079.Google Scholar
  71. 71.
    Martinov, M.V., Plotnikov, A.G., Vitvitsky, V.M., and Ataullakhanov, F.I., Deficiencies of Glycolytic Enzymes As a Possible Cause of Hemolytic Anemia, Biochim. Biophys. Acta, 2000, vol. 1474, no. 1, pp. 75–87.PubMedGoogle Scholar
  72. 72.
    Segel, G.B., Feig, S.A., Glader, B.E., Muller, A., Dutcher, P., and Nathan, D.G., Energy Metabolism in Human Erythrocytes: The Role of Phosphoglycerate Kinase in Cation Transport, Blood, 1975, vol. 46, no. 2, pp. 271–278.PubMedGoogle Scholar
  73. 73.
    Ross, P.D. and Minton, A.P., Hard Quasispherical Model for the Viscosity of Hemoglobin Solutions, Biochem. Biophys. Res. Commun., 1977, vol. 76, no. 4, pp. 971–976.PubMedCrossRefGoogle Scholar
  74. 74.
    Levtov, V.A., Regirer, S.A., and Shadrina, N.Kh., Reologiya krovi (Rheology of Blood), Moscow, Meditsina, 1982.Google Scholar
  75. 75.
    Baskurt, O.K. and Meiselman, H.J., Blood Rheology and Hemodynamics, Semin. Thromb. Hemost., 2003, vol. 29, no. 5, pp. 435–450.PubMedCrossRefGoogle Scholar
  76. 76.
    Ataullakhanov, F.I., Vitvitsky, V.M., Lisovskaya, I.L., and Tuzhilova, E.G., The Analysis of Geometrical Parameters and Mechanical Properties of Red Blood Cells by the Method of Filtration through Nuclear Membrane Filters. I. Mathematical Model, Biofizika (Rus.), 1994, vol. 39, pp. 672–680.Google Scholar
  77. 77.
    Lisovskaya, I.L., Ataullakhanov, F.I., Tuzhilova, E.G., and Vitvitsky, V.M., The Analysis of Geometrical Parameters and Mechanical Properties of Red Blood Cells by the Method of Filtration through Nuclear Membrane Filters. II. Experimental Verification of the Mathematical Model, Biofizika (Rus.), 1994, vol. 39, pp. 864–871.Google Scholar
  78. 78.
    Orlov, S.N., Pokudin, N.I., El-Rabi, L.S., Brusovanik, V.I., and Kubatiyev, A.A., The Transport of Ions to Human Red Blood Cells at Different Forms of Hemolytic Anemia: Correlation Analysis, Biokhimiya (Rus.), 1993, vol. 58, no. 6, pp. 866–873.Google Scholar
  79. 79.
    Hebbel, R.P. and Mohandas, N., Reversible Deformation-Dependent Erythrocyte Cation Leak. Extreme Sensitivity Conferred by Minimal Peroxidation, Biophys. J., 1991, vol. 60, no. 3, pp. 712–715.PubMedCrossRefGoogle Scholar
  80. 80.
    Deuticke, B., Heller, K.B., and Haest, C.W., Leak Formation in Human Erythrocytes by the Radical-Forming Oxidant T-Butylhydroperoxide, Biochim. Biophys. Acta, 1986, vol. 854, no. 2, pp. 169–183.PubMedCrossRefGoogle Scholar
  81. 81.
    Kramer, H.J., Gospodinov, D., and Kruck, F., Functional and Metabolic Studies on Red Blood Cell Sodium Transport in Chronic Uremia, Nephron, 1976, vol. 16, no. 5, pp. 344–358.PubMedCrossRefGoogle Scholar
  82. 82.
    Illner, H. and Shires, G.T., Changes in Sodium, Potassium, and Adenosine Triphosphate Contents of Red Blood Cells in Sepsis and Septic Shock, Circ. Shock, 1982, vol. 9, no. 3, pp. 259–267.PubMedGoogle Scholar
  83. 83.
    Brumen, M. and Heinrich, R., A Metabolic Osmotic Model of Human Erythrocytes, Biosystems, 1984, vol. 17, no. 2, pp. 155–169.PubMedCrossRefGoogle Scholar
  84. 84.
    Beauge, L. and Lew, V.L., Membrane Transport in Red Cells, Ellory, J.C. and Lew, V.L., Eds., Academic Press, 1977, p. 39.Google Scholar
  85. 85.
    Castranova, V., Weise, M.J., and Hoffman, J.F., Anion Transport in Dog, Cat, and Human Red Cells. Effects of Varying Cell Volume and Donnan Ratio, J. Gen. Physiol., 1979, vol. 74, no. 3, pp. 319–334.PubMedCrossRefGoogle Scholar
  86. 86.
    Gardos, G., The Function of Calcium in the Potassium Permeability of Human Erythrocytes, Biochim. Biophys. Acta, 1958, vol. 30, no. 3, pp. 653–654.PubMedCrossRefGoogle Scholar
  87. 87.
    Gardos, G., The Role of Calcium in the Potassium Permeability of Human Erythrocytes, Acta Physiol. Hung., 1959, vol. 15, no. 2, pp. 121–125.PubMedGoogle Scholar
  88. 88.
    Hille, B. and Schwarz, W., Potassium Channels As Multi-Ion Single-File Pores, J. Gen. Physiol., 1978, vol. 72, no. 4, pp. 409–442.PubMedCrossRefGoogle Scholar
  89. 89.
    Maher, A.D. and Kuchel, P.W., The Gardos Channel: A Review of the Ca2+-Activated K+ Channel in Human Erythrocytes, Int. J. Biochem. Cell. Biol., 2003, vol. 35, no. 8, pp. 1182–1197 [Erratum in: Int. J. Biochem. Cell. Biol., 2003, vol. 35, no. 12, pp. 1682.]PubMedCrossRefGoogle Scholar
  90. 90.
    Leinders, T., van Kleef, R.G.D.M., and Vijverberg, H.P.M., Single Ca2+-Activated K+ Channels in Human Erythrocytes: Ca2+-Dependence of Opening Frequency but Not of Open Lifetimes, Biochim. Biophys. Acta, 1992, vol. 1112, no. 1, pp. 67–74.PubMedCrossRefGoogle Scholar
  91. 91.
    Leinders, T., van Kleef, R.G., and Vijverberg, H.P., Distinct Metal Ion Binding Sites on Ca2+-Activated K+ Channels in Inside-Out Patches of Human Erythrocytes, Biochim. Biophys. Acta, 1992, vol. 1112, no. 1, pp. 75–82.PubMedCrossRefGoogle Scholar
  92. 92.
    Simons, T.J., Calcium-Dependent Potassium Exchange in Human Red Cell Ghosts, J. Physiol., 1976, vol. 256, no. 1, pp. 227–244.PubMedGoogle Scholar
  93. 93.
    Lew, V.L. and Ferreira, H.G., Variable Ca Sensitivity of a K-Selective Channel in Intact Red-Cell Membranes, Nature, 1976, vol. 263, no. 5575, pp. 336–338.PubMedCrossRefGoogle Scholar
  94. 94.
    Wiley, J.S. and McCulloch, K.E., Calcium Ions, Drug Action and the Red Cell Membrane, Pharmacol. Ther., 1982, vol. 18, no. 2, pp. 271–792.PubMedCrossRefGoogle Scholar
  95. 95.
    Li, Q., Jungmann, V., Kiyatkin, A., and Low, P.S., Prostaglandin E2 Stimulates a Ca2+-Dependent K+ Channel in Human Erythrocytes and Alters Cell Volume and Filterability, J. Biol. Chem., 1996, vol. 271, no. 31, pp. 18651–18656.PubMedCrossRefGoogle Scholar
  96. 96.
    Rivera, A., Rotter, M.A., and Brugnara, C., Modulation of Gardos Channel Activity by Cytokines in Sickle Erythrocytes, Am. J. Physiol., 1999, vol. 277, no. 4, pt. 1, pp. 746–754.Google Scholar
  97. 97.
    Rivera, A., Jarolim, P., and Brugnara, C., Modulation of Gardos Channel Activity by Cytokines in Sickle Erythrocytes, Blood, 2002, vol. 99, pp. 357–603.PubMedCrossRefGoogle Scholar
  98. 98.
    Boytler, E., Narusheniya metabolizma eritrotsytov i gemoliticheskaya anemiya (Disturbance of the Metabolism of Red Blood Cells and Hemolytic Anemia), Moscow, Meditsina, 1981.Google Scholar
  99. 99.
    Halperin, J.A., Brugnara, C., Kopin, A.S., Ingwall, J., and Tosteson, D.C., Properties of the Na+-K+ Pump in Human Red Cells with Increased Number of Pump Sites, J. Clin. Invest., 1987, vol. 80, no. 1, pp. 128–137.PubMedCrossRefGoogle Scholar
  100. 100.
    Ataullakhanov, F.I., Komarova, S.V., Martinov, M.V., and Vitvitsky, V.M., A Possible Role of Adenylate Metabolism in Human Erythrocytes. 2. Adenylate Metabolism Is Able to Improve the Erythrocyte Volume Stabilization, J. Theor. Biol., 1996, vol. 183, pp. 75–86.CrossRefGoogle Scholar
  101. 101.
    Haas, M., Schmidt, W.F., 3rd, and McManus, T.J., Catecholamine-Stimulated Ion Transport in Duck Red Cells. Gradient Effects in Electrically Neutral [Na + K + 2Cl] Co-Transport, J. Gen. Physiol., 1982, vol. 80, no. 1, pp. 125–147.PubMedCrossRefGoogle Scholar
  102. 102.
    Duhm, J. and Gobel, B.O., Role of the Furosemide-Sensitive Na+/K+ Transport System in Determining the Steady-State Na+ and K+ Content and Volume of Human Erythrocytes in vitro and in vivo, J. Membr. Biol., 1984, vol. 77, no. 3, pp. 243–254.PubMedCrossRefGoogle Scholar
  103. 103.
    Lauf, P.K., Bauer, J., Adragna, N.C., Fujise, H., Zade-Oppen, A.M., Ryu, K.H., and Delpire, E., Erythrocyte K-Cl Cotransport: Properties and Regulation, Am. J. Physiol., 1992, vol. 263, no. 5, pt. 1, pp. C917–C932.PubMedGoogle Scholar
  104. 104.
    Duhm, J. and Becker, B.F., Studies on Lithium Transport across the Red Cell Membrane. V. On the Nature of the Na+-Dependent Li+ Countertransport System of Mammalian Erythrocytes, J. Membr. Biol., 1979, vol. 51, nos. 3–4, pp. 263–286.PubMedGoogle Scholar
  105. 105.
    Komarova, S.V., Mosharov, E.V., Vitvitsky, V.M., and Ataullakhanov, F.I., Adenine Nucleotide Synthesis in Human Erythrocytes Depends on the Mode of Supplementation of Cell Suspension with Adenosine, Blood Cells Mol. Dis., 1999, vol. 25, nos. 3–4, pp. 170–179.PubMedCrossRefGoogle Scholar
  106. 106.
    Sardini, A., Amey, J.S., Weylandt, K.H., Nobles, M., Valverde, M.A., and Higgins, C.F., Cell Volume Regulation and Swelling-Activated Chloride Channels, Biochim. Biophys. Acta, 2003, vol. 1618, no. 2, pp. 153–162.PubMedCrossRefGoogle Scholar
  107. 107.
    Lang, F., Lang, K.S., Wieder, T., Myssina, S., Birka, C., Lang, P.A., Kaiser, S., Kempe, D., Duranton, C., and Huber, S.M., Cation Channels, Cell Volume and the Death of an Erythrocyte, Pflügers Arch., 2003, vol. 447, no. 2, pp. 121–125.PubMedCrossRefGoogle Scholar
  108. 108.
    Lang, F., Busch, G.L., Ritter, M., Volkl, H., Waldegger, S., Gulbins, E., and Haussinger, D., Functional Significance of Cell Volume Regulatory Mechanisms, Physiol. Rev., 1998, vol. 78, no. 1, pp. 247–306.PubMedGoogle Scholar
  109. 109.
    Lew, V.L. and Hockaday, A.R., The Effects of Transport Perturbations on the Homeostasis of Erythrocytes, Novartis Found Symp., 1999, vol. 226, pp. 37–50, Discussion, pp. 50–54.PubMedCrossRefGoogle Scholar
  110. 110.
    Fraser, J.A. and Huang, C.L., A Quantitative Analysis of Cell Volume and Resting Potential Determination and Regulation in Excitable Cells, J. Physiol., 2004, vol. 559, no. 2, pp. 459–478.PubMedCrossRefGoogle Scholar
  111. 111.
    Pannicke, T., Iandiev, I., Uckermann, O., Biedermann, B., Kutzera, F., Wiedemann, P., Wolburg, H., Reichenbach, A., and Bringmann, A., A Potassium Channel-Linked Mechanism of Glial Cell Swelling in the Postischemic Retina, Mol. Cell. Neurosci., 2004, vol. 26, no. 4, pp. 493–502.PubMedCrossRefGoogle Scholar
  112. 112.
    Weinstein, A.M., Modeling Epithelial Cell Homeostasis: Assessing Recovery and Control Mechanisms, Bull. Math. Biol., 2004, vol. 66, no. 5, pp. 1201–1240.PubMedCrossRefGoogle Scholar
  113. 113.
    Ehrenfeld, J., Raschi, C., and Brochiero, E., Basolateral Potassium Membrane Permeability of A6 Cells and Cell Volume Regulation, J. Membr. Biol., 1994, vol. 138, no. 3, pp. 181–195.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • F. I. Ataullakhanov
    • 1
    • 2
    • 3
  • N. O. Korunova
    • 2
  • I. S. Spiridonov
    • 2
  • I. O. Pivovarov
    • 3
  • N. V. Kalyagina
    • 4
  • M. V. Martinov
    • 2
  1. 1.Center for Theoretical Problems of Physicochemical PharmacologyRussian Academy of SciencesMoscowRussia
  2. 2.National Research Center for HematologyRussian Academy of Medical SciencesMoscowRussia
  3. 3.Physics DepartmentMoscow Lomonosov State UniversityMoscowRussia
  4. 4.Bauman State Technical UniversityMoscowRussia

Personalised recommendations