Skip to main content
Log in

Abstract

Dendritic cells (DC) play a key role in adaptive immune response. By virtue of their extremely wide distribution and high populational diversity, DC interact with almost all types of immune cells linking innate and adaptive immunity. Due to great diversity of receptors, DC recognize a lot of pathogenic microorganisms and namely DC are responsible for the subsequent immune response. Inflammation triggers maturation of DC, which manifests itself in intracellular rearrangement and in appearance of costimulating molecules (CD40, CD80 and CD86) on DC surface. DC capture and process antigens keeping high amount of immunogenic peptides which are then presented to naive lymphocytes and induce their differentiation into effector cells. Depending on pathogen type and cytokine microenvironment, DC induce polarization of immune responses. In the absence of proinflammatory factors DC induce tolerance. In addition, DC play a crucial role in T-lymphocyte selection and Treg formation. The basic traits of DC biology are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ag:

antigen

APC:

antigen-presenting cells

DC:

dendritic cells

IL:

interleukin

INF:

interferon

LPS:

lipopolysaccharide

NK:

natural killer cells

NKT:

natural killer T-lymphocytes

OVA:

ovalbumin

pDC:

Plasmacytoid dendritic cells

Treg:

regulatory T-lymphocytes

TGF:

transforming growth factor

TCR:

T-cell receptor

TNF:

tumor necrosis factor

ER:

endoplasmic reticulum

TLR:

Toll-like receptors

References

  1. Shortman, K. and Liu Y.J., Mouse and Human Dendritic Cell Subtypes, Nat. Rev. Immunol., 2002, vol. 2, pp. 151–161.

    PubMed  CAS  Google Scholar 

  2. Ardavin, C., Wu, L., Li, C.L., and Shortman, K., Thymic Dendritic Cells and T Cells Develop Simultaneously within the Thymus from a Common Precursor Population, Nature, 1993, vol. 362, pp. 761–763.

    PubMed  CAS  Google Scholar 

  3. Izon, D., Rudd, K., DeMuth, W., Pear, W.S., Clendenin, C., Lindsley, R.C., and Allman, D., A Common Pathway for Dendritic Cell and Early B Cell Development, J. Immunol., 2001, vol. 167, pp. 1387–1392.

    PubMed  CAS  Google Scholar 

  4. Naik, S., Vremec, D., Wu, L., O’Keeffe, M., and Shortman, K., CD8alpha+ Mouse Spleen Dendritic Cells Do Not Originate from the CD8alpha Dendritic Cell Subset, Blood, 2003, vol. 102, pp. 601–604.

    PubMed  CAS  Google Scholar 

  5. Manz, M.G., Traver, D., Miyamoto, T., Weissman, I.L., and Akashi, K., Dendritic Cell Potentials of Early Lymphoid and Myeloid Progenitors, Blood, 2001, vol. 97, pp. 3333–3341.

    PubMed  CAS  Google Scholar 

  6. Del Hoyo, G.M., Martín, P., Vargas, H.H., Ruiz, S., Arias, C.F., and Ardavín, C., Characterization of a Common Precursor Population for Dendritic Cells, Nature, 2002, vol. 415, pp. 1043–1047.

    PubMed  Google Scholar 

  7. Onai, N., Obata-Onai, A., Schmid, M.A., Ohteki, T., Jarrossay, D., and Manz, M.G., Identification of Clonogenic Common Flt3+M-CSFR+ Plasmacytoid and Conventional Dendritic Cell Progenitors in Mouse Bone Marrow, Nat. Immunol., 2007, vol. 8, pp. 1207–1216.

    PubMed  CAS  Google Scholar 

  8. Naik, S.H., Sathe, P., Park, H.Y., Metcalf, D., Proietto, A.I., Dakic, A., Carotta, S., O’Keeffe, M., Bahlo, M., Papenfuss, A., Kwak, J.Y., Wu, L., and Shortman, K., Development of Plasmacytoid and Conventional Dendritic Cell Subtypes from Single Precursor Cells Derived in Vitro and in Vivo, Nat. Immunol., 2007, vol. 8, pp. 1217–1226.

    PubMed  CAS  Google Scholar 

  9. Onai, N., Obata-Onai, A., Schmid, M.A., and Manz, M.G., Flt3 in Regulation of Type I Interferon-Producing Cell and Dendritic Cell Development, Ann. NY. Acad. Sci., 2007, vol. 1106, pp. 253–261.

    PubMed  CAS  Google Scholar 

  10. Wu, L. and Shortman, K., Heterogeneity of Thymic Dendritic Cells, Semin. Immunol., 2005, vol. 17, pp. 304–312.

    PubMed  CAS  Google Scholar 

  11. Saunders, D., Lucas, K., Ismaili, J., Wu, L., Maraskovsky, E., Dunn, A., and Shortman, K., Dendritic Cell Development in Culture from Thymic Precursor Cells in the Absence of Granulocyte/Macrophage Colony-Stimulating Factor, J. Exp. Med., 1996, vol. 184, pp. 2185–2196.

    PubMed  CAS  Google Scholar 

  12. Wu, L., Li, C.L., and Shortman, K., Thymic Dendritic Cell Precursors: Relationship to the T Lymphocyte Lineage and Phenotype of the Dendritic Cell Progeny, J. Exp. Med., 1996, vol. 184, pp. 903–911.

    PubMed  CAS  Google Scholar 

  13. Donskoy, E. and Goldschneider, I., Two Developmentally Distinct Populations of Dendritic Cells Inhabit the Adult Mouse Thymus: Demonstration by Differential Importation of Hematogenous Precursors under Steady State Conditions, J. Immunol., 2003, vol. 170, pp. 3514–3521.

    PubMed  CAS  Google Scholar 

  14. Cyster, J.G., Ansel, K.M., Reif, K., Ekland, E.H., Hyman, P.L., Tang, H.L., Luther, S.A., and Ngo, V.N., Follicular Stromal Cells and Lymphocyte Homing to Follicles, Immunol. Rev., 2000, vol. 176, pp. 181–193.

    PubMed  CAS  Google Scholar 

  15. Murakami, T., Chen, X., Hase, K., Sakamoto, A., Nishigaki, C., and Ohno, H., Splenic CD19-CD35+B220+ Cells Function As an Inducer of Follicular Dendritic Cell Network Formation, Blood, 2007, vol. 110, pp. 1215–1224.

    PubMed  CAS  Google Scholar 

  16. Dieu, M.C., Vanbervliet, B., Vicari, A., Bridon, J.M., Oldham, E., Ait-Yahia, S., Briere, F., Zlotnik, A., Lebecque, S., and Caux, C., Selective Recruitment of Immature and Mature Dendritic Cells by Distinct Chemokines Expressed in Different Anatomic Sites, J. Exp. Med., 1998, vol. 188, pp. 373–386.

    PubMed  CAS  Google Scholar 

  17. Weiss, J.M., Renkl, A.C., Maier, C.S., Kimmig, M., Liaw, L., Ahrens, T., Kon, S., Maeda, M., Hotta, H., Uede, T., and Simon, J.C., Osteopontin Is Involved in the Initiation of Cutaneous Contact Hypersensitivity by Inducing Langerhans and Dendritic Cell Migration to Lymph Nodes, J. Exp. Med., 2001, vol. 194, pp. 1219–1229.

    PubMed  CAS  Google Scholar 

  18. Crowley, M.T., Inaba, K., Witmer-Pack, M.D., Gezelter, S., and Steinman, R.M., Use of the Fluorescence Activated Cell Sorter to Enrich Dendritic Cells from Mouse Spleen, J. Immunol. Methods, 1990, vol. 133, pp. 55–66.

    PubMed  CAS  Google Scholar 

  19. Villadangos, J.A., Schnorrer, P., and Wilson, N.S., Control of MHC Class II Antigen Presentation in Dendritic Cells: A Balance between Creative and Destructive Forces, Immunol. Rev., 2005, vol. 207, pp. 191–205.

    PubMed  CAS  Google Scholar 

  20. Vremec, D., Pooley, J., Hochrein, H., Wu, L., and Shortman, K., CD4 and CD8 Expression by Dendritic Cell Subtypes in Mouse Thymus and Spleen, J. Immunol., 2000, vol. 64, pp. 2978–2986.

    Google Scholar 

  21. O’Doherty, U., Peng, M., Gezelter, S., Swiggard, W.J., Betjes, M., Bhardwaj, N., and Steinman, R.M., Human Blood Contains Two Subsets of Dendritic Cells, One Immunologically Mature and the Other Immature, Immunology, 1994, vol. 82, pp. 487–493.

    PubMed  CAS  Google Scholar 

  22. Asselin-Paturel, C., Brizard, G., Pin, J.J., Briere, F., and Trinchieri, G., Mouse Strain Differences in Plasmacytoid Dendritic Cell Frequency and Function Revealed by a Novel Monoclonal Antibody, J. Immunol., 2003, vol. 171, pp. 6466–6477.

    PubMed  CAS  Google Scholar 

  23. Nakano, H., Yanagita, M., and Gunn, M.D., CD11c+B220+Gr-1+ Cells In Mouse Lymph Nodes and Spleen Display Characteristics of Plasmacytoid Dendritic Cells, J. Exp. Med., 2001, vol. 194, pp. 1171–1178.

    PubMed  CAS  Google Scholar 

  24. Barchet, W., Cella, M., and Colonna, M., Plasmacytoid Dendritic Cells—Virus Expert of Innate Immunity, Semin. Immunol., 2005, vol. 17, pp. 253–261.

    PubMed  CAS  Google Scholar 

  25. Dalod, M., Hamilton, T., Salomon, R., Salazar-Mather, T.P., Henry, S.C., Hamilton, J.D., and Biron, C.A., Dendritic Cell Responses to Early Murine Cytomegalovirus Infection: Subset Functional Specialization and Differential Regulation by Interferon Alpha/Beta, J. Exp. Med., 2003, vol. 197, pp. 885–898.

    PubMed  CAS  Google Scholar 

  26. Cella, M., Facchetti, F., Lanzavecchia, A., and Colonna, M., Plasmacytoid Dendritic Cells Activated by Influenza Virus and CD40l Drive a Potent TH1 Polarization, Nat. Immunol., 2000, vol. 1, pp. 305–310.

    PubMed  CAS  Google Scholar 

  27. Poeck, H., Wagner, M., Battiany, J., Rothenfusser, S., Wellisch, D., Hornung, V., Jahrsdorfer, B., Giese, T., Endres, S., and Hartmann, G., Plasmacytoid Dendritic Cells, Antigen, and CpG-C License Human B Cells for Plasma Cell Differentiation and Immunoglobulin Production in the Absence of T-Cell Help, Blood, 2004, vol. 103, pp. 3058–3064.

    PubMed  CAS  Google Scholar 

  28. Trombetta, E.S. and Mellman, I., Cell Biology of Antigen Processing in Vitro and in Vivo, Annu. Rev. Immunol., 2005, vol. 23, pp. 975–1028.

    PubMed  CAS  Google Scholar 

  29. Conner, S.D. and Schmid, S.L., Regulated Portals of Entry into the Cell, Nature, 2003, vol. 422, pp. 37–44.

    PubMed  CAS  Google Scholar 

  30. Hall, A. and Nobes, C.D., Rho GTPases: Molecular Switches That Control the Organization and Dynamics of the Actin Cytoskeleton, Phil. Trans. R. Soc. Lond. B. Biol. Sci., 2000, vol. 355, pp. 965–970.

    CAS  Google Scholar 

  31. Jurgens, M., Wollenberg, A., Hanau, D, De La Salle, H., and Bieber, T., Activation of Human Epidermal Langerhans Cells by Engagement of the High Affinity Receptor for IgE, FcɛRI, J. Immunol., 1995, vol. 155, pp. 5184–5189.

    PubMed  CAS  Google Scholar 

  32. Jiang, W., Swiggard, W.J., Heufler, C., Peng, M., Mirza, A., Steinman, R.M., and Nussenzweig, M.C., The Receptor DEC-205 Expressed by Dendritic Cells and Thymic Epithelial Cells Is Involved in Antigen Processing, Nature, 1995, vol. 375, pp. 151–155.

    PubMed  CAS  Google Scholar 

  33. Engering, A.J., Cella, M., Fluitsma, D., Brockhaus, M., Hoefsmit, E.C., Lanzavecchia, A., and Pieters, J., The Mannose Receptor Functions As a High Capacity and Broad Specificity Antigen Receptor in Human Dendritic Cells, Eur. J. Immunol., 1997, vol. 27, pp. 2417–2425.

    PubMed  CAS  Google Scholar 

  34. Basu, S., Binder, R.J., Ramalingam, T., and Srivastava, P.K., CD91 Is a Common Receptor for Heat Shock Proteins gp96, hsp90, hsp70, and Calreticulin, Immunity, 2001, vol. 14, pp. 303–313.

    PubMed  CAS  Google Scholar 

  35. Blander, J.M, and Medzhitov, R., Regulation of Phagosome Maturation by Signals from Toll-Like Receptors, Science, 2004, vol. 304, pp. 1014–1018.

    PubMed  CAS  Google Scholar 

  36. Reis, E., Sousa, C., Stahl, P.D., and Austyn, J.M., Phagocytosis of Antigens by Langerhans Cells in Vitro, J. Exp. Med., 1993, vol. 178, pp. 509–519.

    Google Scholar 

  37. Bonifaz, L., Bonnyay, D., Mahnke, K., Rivera, M., Nussenzweig, M.C., and Steinman, R.M., Efficient Targeting of Protein Antigen to the Dendritic Cell Receptor DEC-205 in the Steady State Leads to Antigen Presentation on Major Histocompatibility Complex Class I Products and Peripheral CD8+ T Cell Tolerance, J. Exp. Med., 2002, vol. 196, pp. 1627–1638.

    PubMed  CAS  Google Scholar 

  38. Stambach, N.S. and Taylor, M.E., Characterization of Carbohydrate Recognition by Langerin, a C-Type Lectin of Langerhans Cells, Glycobiology, 2003, vol. 13, pp. 401–410.

    PubMed  CAS  Google Scholar 

  39. Sallusto, F., Cella, M., Danieli, C., and Lanzavecchia, A., Dendritic Cells Use Macropinocytosis and the Mannose Receptor to Concentrate Macromolecules in the Major Histocompatibility Complex Class II Compartment: Downregulation by Cytokines and Bacterial Products, J. Exp. Med., 1995, vol. 182, pp. 389–400.

    PubMed  CAS  Google Scholar 

  40. Steele-Mortimer, O., Knodler, L.A., and Finlay, B.B., Poisons, Ruffles and Rockets: Bacterial Pathogens and the Host Cell Cytoskeleton, Traffic, 2000, vol. 1, pp. 107–118.

    PubMed  CAS  Google Scholar 

  41. Sinai, A.P. and Joiner, K.A., Safe Haven: The Cell Biology of Nonfusogenic Pathogen Vacuoles, Annu. Rev. Microbiol., 1997, vol. 51, pp. 415–462.

    PubMed  CAS  Google Scholar 

  42. Gallucci, S. and Matzinger, P., Danger Signals: SOS to the Immune System, Curr. Opin. Immunol., 2001, vol. 13, pp. 114–119.

    PubMed  CAS  Google Scholar 

  43. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., and Amigorena, S., Antigen Presentation and T Cell Stimulation by Dendritic Cells, Annu. Rev. Immunol., 2002, vol. 20, pp. 621–267.

    PubMed  CAS  Google Scholar 

  44. Medzhitov, R. and Janeway, C., Jr., Innate Immunity, N. Engl. J. Med., 2000, vol. 343, pp. 338–344.

    PubMed  CAS  Google Scholar 

  45. Aderem, A. and Ulevitch, R.J., Toll-Like Receptors in the Induction of the Innate Immune Response, Nature, 2000, vol. 406, pp. 782–787.

    PubMed  CAS  Google Scholar 

  46. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., and Palucka, K., Immunobiology of Dendritic Cells, Annu. Rev. Immunol., 2000, vol. 18, pp. 767–811.

    PubMed  CAS  Google Scholar 

  47. Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., van Kooten, C., Durand, I., and Banchereau, J., Activation of Human Dendritic Cells through CD40 Crosslinking, J. Exp. Med., 1994, vol. 180, pp. 1263–1272.

    PubMed  CAS  Google Scholar 

  48. Ohshima, Y., Tanaka, Y., Tozawa, H., Takahashi, Y., Maliszewski, C., and Delespesse, G., Expression and Function of OX40 Ligand on Human Dendritic Cells, J. Immunol., 1997, vol. 159, pp. 3838–3848.

    PubMed  CAS  Google Scholar 

  49. Regnault, A., Lankar, D., Lacabanne, V., Rodriguez, A., Thery, C., Rescigno, M., Saito, T., Verbeek, S., Bonnerot, C., Ricciardi-Castagnoli, P., and Amigorena, S., Fcgamma Receptor-Mediated Induction of Dendritic Cell Maturation and Major Histocompatibility Complex Class I-Restricted Antigen Presentation after Immune Complex Internalization, J. Exp. Med., 1999, vol. 189, pp. 371–380.

    PubMed  CAS  Google Scholar 

  50. Sauter, B., Albert, M.L., Francisco, L., Larsson, M., Somersan, S., and Bhardwaj, N., Consequences of Cell Death: Exposure to Necrotic Tumor Cells, but Not Primary Tissue Cells or Apoptotic Cells, Induces the Maturation of Immunostimulatory Dendritic Cells, J. Exp. Med., 2000, vol. 191, pp. 423–434.

    PubMed  CAS  Google Scholar 

  51. Singh-Jasuja, H., Scherer, H.U., Hilf, N., Arnold-Schild, D., Rammensee, H.G., Toes, R.E., and Schild, H., The Heat Shock Protein gp96 Induces Maturation of Dendritic Cells and Down-Regulation of Its Receptor, Eur. J. Immunol., 2000, vol. 30, pp. 2211–2215.

    PubMed  CAS  Google Scholar 

  52. Nobes, C. and Marsh, M., Dendritic Cells: New Roles for CDc42 and Rac in Antigen Uptake?, Curr. Biol., 2000, vol. 10, pp. 739–741.

    Google Scholar 

  53. West, M.A., Prescott, A.R., Eskelinen, E.L., Ridley, A.J., and Watts, C., Rac Is Required for Constitutive Macropinocytosis by Dendritic Cells but Does Not Control Its Downregulation, Curr. Biol., 2000, vol. 10, pp. 839–848.

    PubMed  CAS  Google Scholar 

  54. Garrett, W.S., Chen, L.M., Kroschewski, R., Ebersold, M., Turley, S., Trombetta, S., Galan, J.E., and Mellman, I., Developmental Control of Endocytosis in Dendritic Cells by Cdc42, Cell, 2000, vol. 102, pp. 325–334.

    PubMed  CAS  Google Scholar 

  55. Cella, M., Engering, A., Pinet, V., Pieters, J., and Lanzavecchia, A., Inflammatory Stimuli Induce Accumulation of MHC Class II Complexes on Dendritic Cells, Nature, 1997, vol. 388, pp. 782–787.

    PubMed  CAS  Google Scholar 

  56. Winzler, C., Rovere, P., Rescigno, M., Granucci, F., Penna, G., Adorini, L., Zimmermann, V.S., Davoust, J., and Ricciardi-Castagnoli, P., Maturation Stages of Mouse Dendritic Cells in Growth Factor Dependent Long-Term Cultures, J. Exp. Med., 1997, vol. 185, pp. 317–328.

    PubMed  CAS  Google Scholar 

  57. Sallusto, F. and Lanzavecchia, A., Understanding Dendritic Cell and T-Lymphocyte Traffic through the Analysis of Chemokine Receptor Expression, Immunol. Rev., 2000, vol. 177, pp. 134–140.

    PubMed  CAS  Google Scholar 

  58. Tang, H.L. and Cyster, J.G., Chemokine Upregulation and Activated T Cell Attraction by Maturing Dendritic Cells, Science, 1999, vol. 284, pp. 819–822.

    PubMed  CAS  Google Scholar 

  59. Piqueras, B., Connolly, J., Freitas, H., Palucka, A.K., and Banchereau, J., Upon Viral Exposure, Myeloid and Plasmacytoid Dendritic Cells Produce 3 Waves of Distinct Chemokines to Recruit Immune Effectors, Blood, 2006, vol. 107, pp. 2613–2618.

    PubMed  CAS  Google Scholar 

  60. Mosialos, G., Birkenbach, M., Ayehunie, S., Matsumura, F., Pinkus, G.S., Kieff, E., and Langhoff, E., Circulating Human Dendritic Cells Differentially Express High Levels of a 55-kD Actin-Bundling Protein, Am. J. Pathol., 1996, vol. 148, pp. 593–600.

    PubMed  CAS  Google Scholar 

  61. Mosse, C.A., Meadows, L., Luckey, C.J., Kittlesen, D.J., Huczko, E.L., Slingluff, L., Shabanowitz, J., Hunt, D.F., and Engelhard, V.H., The Class I Antigen-Processing Pathway for the Membrane Protein Tyrosinase Involves Translation in the Endoplasmic Reticulum and Processing in the Cytosol, J. Exp. Med., 1998, vol. 187, pp. 37–48.

    PubMed  CAS  Google Scholar 

  62. Zarling, A.L., Ficarro, S.B., White, F.M., Shabanowitz, J., Hunt, D.F., and Engelhard, V.H., Phosphorylated Peptides Are Naturally Processed and Presented by Major Histocompatibility Complex Class I Molecules in Vivo, J. Exp. Med., 2000, vol. 192, pp. 1755–1762.

    PubMed  CAS  Google Scholar 

  63. Chen, W., Yewdell, J.W., Levine, R.L., and Bennink, J.R., Modification of Cysteine Residues in Vitro and in Vivo Affects the Immunogenicity and Antigenicity of Major Histocompatibility Complex Class I Restricted Viral Determinants, J. Exp. Med., 1999, vol. 189, pp. 1757–1764.

    PubMed  CAS  Google Scholar 

  64. Ostankovitch, M., Robila, V., and Engelhard, V.H., Regulated Folding of Tyrosinase in the Endoplasmic Reticulum Demonstrates That Misfolded Full-Length Proteins Are Efficient Substrates for Class I Processing and Presentation, J. Immunol., 2005, vol. 174, pp. 2544–2551.

    PubMed  CAS  Google Scholar 

  65. Bates, E.E., Ravel, O., Dieu, M.C., Ho, S., Guret, C., Bridon, J.M., Ait-Yahia, S., Briere, F., Caux, C., Banchereau, J., and Lebecque, S., Identification and Analysis of a Novel Member of the Ubiquitin Family Expressed In Dendritic Cells and Mature B Cells, Eur. J. Immunol., 1997, vol. 27, pp. 2471–2477.

    PubMed  CAS  Google Scholar 

  66. Rock, K.L., York, I.A., Saric, T., and Goldberg, A.L., Protein Degradation and the Generation of MHC Class I-Presented Peptides, Adv. Immunol., 2002, vol. 80, pp. 1–70.

    PubMed  CAS  Google Scholar 

  67. Cresswell, P., Bangia, N., Dick, T., and Diedrich, G., The Nature of the MHC Class I Peptide Loading Complex, Immunol. Rev., 1999, vol. 172, pp. 21–28.

    PubMed  CAS  Google Scholar 

  68. Lautscham, G., Rickinson, A., and Blake, N., TAP-Independent Antigen Presentation on MHC Class I Molecules: Lessons from Epstein-Barr Virus, Microbes Infect., 2003, vol. 5, pp. 291–299.

    PubMed  CAS  Google Scholar 

  69. Kleijmeer, M.J., Ossevoort, M.A., van Veen, C.J., van Hellemond, J.J., Neefjes, J.J., Kast, W.M., Meiief, C.J., and Geuze, H.J., MHC Class II Compartments and the Kinetics of Antigen Presentation in Activated Mouse Spleen Dendritic Cells, J. Immunol., 1995, vol. 154, pp. 5715–5724.

    PubMed  CAS  Google Scholar 

  70. Castellino, F., Zhong, G., and Germain, R.N., Antigen Presentation by MHC Class II Molecules: Invariant Chain Function, Protein Trafficking, and the Molecular Basis of Diverse Determinant Capture, Hum. Immunol., 1997, vol. 54, pp. 159–169.

    PubMed  CAS  Google Scholar 

  71. Pierre, P. and Mellman, I., Developmental Regulation of Invariant Chain Proteolysis Controls MHC Class II Trafficking in Mouse Dendritic Cells, Cell, 1998, vol. 93, pp. 1135–1145.

    PubMed  CAS  Google Scholar 

  72. Inaba, K., Turley, S., Iyoda, T., Yamaide, F., Shimoyama, S., Reis, E Sousa, C., Germain, R.N., Mellman, I., and Steinman, R.M., The Formation of Immunogenic Major Histocompatibility Complex Class II-Peptide Ligands in Lysosomal Compartments of Dendritic Cells Is Regulated by Inflammatory Stimuli, J. Exp. Med., 2000, vol. 191, pp. 927–936.

    PubMed  CAS  Google Scholar 

  73. Arunachalam, B., Phan, U.T., Geuze, H.J., and Cresswell, P., Enzymatic Reduction of Disulfide Bonds in Lysosomes: Characterization of a Gamma-Interferon-Inducible Lysosomal Thiol Reductase (GILT), Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 745–750.

    PubMed  CAS  Google Scholar 

  74. Trombetta, E.S., Ebersold, M., Garrett, W., Pypaert, M., and Mellman, I., Activation of Lysosomal Function during Dendritic Cell Maturation, Science, 2003, vol. 299, pp. 1400–1403.

    PubMed  CAS  Google Scholar 

  75. Elsen, S., Doussiere, J., Villiers, C.L., Faure, M., Berthier, R., Papaioannou, A., Grandvaux, N., Marche, P.N., and Vignais, P.V., Cryptic O2-Generating NADPH Oxidase in Dendritic Cells, J. Cell. Sci., 2004, vol. 117, pp. 2215–2226.

    PubMed  CAS  Google Scholar 

  76. Savina, A. and Amigorena, S., Phagocytosis and Antigen Presentation in Dendritic Cells, Immunol. Rev., 2007, vol. 219, pp. 143–156.

    PubMed  CAS  Google Scholar 

  77. Delamarre, L., Pack, M., Chang, H., Mellman, I., and Trombetta, E.S., Differential Lysosomal Proteolysis in Antigen-Presenting Cells Determines Antigen Fate, Science, 2005, vol. 307, pp. 1630–1634.

    PubMed  CAS  Google Scholar 

  78. Lennon-Dumenil, A.M., Bakker, A.H., Maehr, R., Fiebiger, E., Overkleeft, H.S., Rosemblatt, M., Ploegh, H.L., and Lagaudriere-Gesbert, C., Analysis of Protease Activity in Live Antigen-Presenting Cells Shows Regulation of the Phagosomal Proteolytic Contents during Dendritic Cell Activation, J. Exp. Med., 2002, vol. 196, pp. 529–540.

    PubMed  CAS  Google Scholar 

  79. El-Sukkari D., Wilson, N.S., Hakansson, K., Steptoe, R.J., Grubb, A., Shortman, K., and Villadangos, J.A., The Protease Inhibitor Cystatin C Is Differentially Expressed among Dendritic Cell Populations, but Does Not Control Antigen Presentation, J. Immunol., 2003, vol. 171, pp. 5003–5011.

    PubMed  CAS  Google Scholar 

  80. Pope, M., Gezelter, S., Gallo, N., Hoffman, L., and Steinman, R.M., Low Levels of HIV-1 Infection in Cutaneous Dendritic Cells Promote Extensive Viral Repiication upon Binding to Memory CD4+ T Cells, J. Exp. Med., 1995, vol. 182, pp. 2045–2056.

    PubMed  CAS  Google Scholar 

  81. Kovacsovics-Bankowski, M. and Rock, K.L., A Phagosome-to-Cytosol Pathway for Exogenous Antigens Presented on MHC Class I Molecules, Science, 1995, vol. 267, pp. 243–246.

    PubMed  CAS  Google Scholar 

  82. Pfeifer, J.D., Wick, M.J., Roberts, R.L., Findlay, K., Normark, S.J., and Harding, C.V., Phagocytic Processing of Bacterial Antigens for Class I MHC Presentation to T Cells, Nature, 1993, vol. 361, pp. 359–362.

    PubMed  CAS  Google Scholar 

  83. Fonteneau, J.F., Kavanagh, D.G., Lirvall, M., Sanders, C., Cover, T.L., Bhardwaj, N., and Larsson, M., Characterization of the MHC Class I Cross-Presentation Pathway for Cell-Associated Antigens by Human Dendritic Cells, Blood, 2003, vol. 102, pp. 4448–4455.

    PubMed  CAS  Google Scholar 

  84. Ackerman, A.L. and Cresswell, P., Cellular Mechanisms Governing Cross-Presentation of Exogenous Antigens, Nat. Immunol., 2004, vol. 5, pp.678–684.

    PubMed  CAS  Google Scholar 

  85. Imai, J., Hasegawa, H., Maruya, M., Koyasu, S., and Yahara, I., Exogenous Antigens Are Processed through the Endoplasmic Reticulum-Associated Degradation (ERAD) in Cross-Presentation by Dendritic Cells, Int. Immunol., 2005, vol. 17, pp. 45–53.

    PubMed  CAS  Google Scholar 

  86. Huang, A.Y., Bruce, A.T., Pardoll, D.M., and Levitsky, H.I., In Vivo Cross-Priming of MHC Class I-Restricted Antigens Requires the TAP Transporter, Immunity, 1996, vol. 4, pp. 349–355.

    PubMed  CAS  Google Scholar 

  87. Sigal, L.J., Crotty, S., Andino, R., and Rock, K.L., Cytotoxic T-Cell Immunity to Virus-Infected Non-Haematopoietic Cells Requires Presentation of Exogenous Antigen, Nature, 1999, vol. 398, pp. 77–80.

    PubMed  CAS  Google Scholar 

  88. Macary, P.A., Lindsay, M., Scott, M.A., Craig, J.I., Luzio, J.P., and Lehner, P.J., Mobilization of MHC Class I Molecules from Late Endosomes to the Cell Surface Following Activation of CD34-Derived Human Langerhans Cells, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 3982–3987.

    PubMed  CAS  Google Scholar 

  89. Kleijmeer, M.J., Escola, J.M., Uytdehaag, F.G., Jakobson, E., Griffith, J.M., Osterhaus, A.D., Stoorvogel, W., Melief, C.J., Rabouille, C., and Geuze, H.J., Antigen Loading of MHC Class I Molecules in the Endocytic Tract, Traffic, 2001, vol. 2, pp. 124–137.

    PubMed  CAS  Google Scholar 

  90. Castellino, F., Boucher, P.E., Eichelberg, K., Mayhew, M., Rothman, J.E., Houghton, A.N., and Germain, R.N., Receptor-Mediated Uptake of Antigen/Heat Shock Protein Complexes Results in Major Histocompatibility Complex Class I Antigen Presentation via Two Distinct Processing Pathways, J. Exp. Med., 2000, vol. 191, pp. 1957–1964.

    PubMed  CAS  Google Scholar 

  91. Gromme, M. and Neefjes, J., Antigen Degradation or Presentation by MHC Class I Molecules via Classical and Non-Classical Pathways, Mol. Immunol., 2002, vol. 39, pp. 181–202.

    PubMed  CAS  Google Scholar 

  92. Gromme, M., Uytdehaag, F.G., Janssen, H., Calafat, J., van Binnendijk, R.S., Kenter, M.J., Tulp, A., Verwoerd, D., and Neefjes, J., Recycling MHC Class I Molecules and Endosomal Peptide Loading, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 10326–10331.

    PubMed  CAS  Google Scholar 

  93. Porcelli, S.A. and Modlin, R.L., The CD1 System: Antigen-Presenting Molecules for T Cell Recognition of Lipids and Glycolipids, Annu. Rev. Immunol., 1999, vol. 17, pp. 297–329.

    PubMed  CAS  Google Scholar 

  94. Matsuda, J.L. and Kronenberg, M., Presentation of Self and Microbial Lipids by CD1 Molecules, Curr. Opin. Immunol., 2001, vol. 13, pp. 19–25.

    PubMed  CAS  Google Scholar 

  95. Sugita, M., Grant, E.P., van Donselaar, E., Hsu, V.W., Rogers, R.A., Peters, P.J., and Brenner, M.B., Separate Pathways for Antigen Presentation by CD1 Molecules, Immunity, 1999, vol. 11, pp. 743–752.

    PubMed  CAS  Google Scholar 

  96. Sugita, M., van der Wel, N., Rogers, R.A., Peters, P.J., and Brenner, M.B., CD1c Molecules Broadly Survey the Endocytic System, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 8445–8450.

    PubMed  CAS  Google Scholar 

  97. Park, S.H., Weiss, A., Benlagha, K., Kyin, T., Teyton, L., and Bendelac, A., The Mouse CD1d-Restricted Repertoire Is Dominated by a Few Autoreactive T Cell Receptor Families, J. Exp. Med., 2001, vol. 193, pp. 893–904.

    PubMed  CAS  Google Scholar 

  98. Thery, C., Zitvogel, L., and Amigorena, S., Exosomes: Composition, Biogenesis and Function, Nat. Rev. Immunol., 2002, vol. 2, pp. 569–579.

    PubMed  CAS  Google Scholar 

  99. Thery, C., Boussac, M., Veron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J., and Amigorena, S., Proteomic Analysis of Dendritic Cell-Derived Exosomes: A Secreted Subcellular Compartment Distinct from Apoptotic Vesicles, J. Immunol., 2001, vol. 166, pp. 7309–7318.

    PubMed  CAS  Google Scholar 

  100. Segura, E., Nicco, C., Lombard, B., Veron, P., Raposo, G., Batteux, F., Amigorena, S., and Thery, C., ICAM-1 on Exosomes from Mature Dendritic Cells Is Critical for Efficient Naive T-Cell Priming, Blood, 2005, vol. 106, pp. 216–223.

    PubMed  CAS  Google Scholar 

  101. Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G., and Amigorena, S., Eradication of Established Murine Tumors Using a Novel Cell-Free Vaccine: Dendritic Cell-Derived Exosomes, Nat. Med., 1998, vol. 4, pp. 594–600.

    PubMed  CAS  Google Scholar 

  102. Quah, B.J. and O’Neill, H.C., The Immunogenicity of Dendritic Cell Derived Exosomes, Blood Cells Mol. Dis., 2005, vol. 35, pp. 94–110.

    PubMed  CAS  Google Scholar 

  103. Kim, S.H., Lechman, E.R., Bianco, N., Menon, R., Keravala, A., Nash, J., Mi, Z., Watkins, S.C., Gambotto, A., and Robbins, P.D., Exosomes Derived from IL-10-Treated Dendritic Cells Can Suppress Inflammation and Collageninduced Arthritis, J. Immunol., 2005, vol. 174, pp. 6440–6448.

    PubMed  CAS  Google Scholar 

  104. Hao, S., Bai, O., Li, F., Yuan, J., Laferte, S., and Xiang, J., Mature Dendritic Cells Pulsed with Exosomes Stimulate Efficient Cytotoxic T-Lymphocyte Responses and Antitumour Immunity, Immunology, 2007, vol. 120, pp. 90–102.

    PubMed  CAS  Google Scholar 

  105. Segura, E., Guerin, C., Hogg, N., Amigorena, S., and Théry, C., CD8+ Dendritic Cells Use LFA-1 to Capture MHC-Peptide Complexes from Exosomes in Vivo, J. Immunol., 2007, vol. 179, pp. 1489–1496.

    PubMed  CAS  Google Scholar 

  106. Colino, J. and Snapper, C.M., Exosomes from Bone-Marrow Dendritic Cells Pulsed with Diphtheria Toxoid Preferentially Induce Type 1 Antigenspecific IgG Responses in Naive Recipients in the Absence of Free Antigen, J. Immunol., 2006, vol. 177, pp. 3757–3762.

    PubMed  CAS  Google Scholar 

  107. Colino, J. and Snapper, C.M., Dendritic Cell-Derived Exosomes Express A Streptococcus Pneumoniae Capsular Polysaccharide Type 14 Cross-Reactive Antigen That Induces Protective Immunoglobuiin Responses against Pneumococcal Infection in Mice, Infect. Immun., 2007, vol. 75, pp. 220–230.

    PubMed  CAS  Google Scholar 

  108. Carbone, F.R., Belz, G.T., and Heath, W.R., Transfer of Antigen between Migrating and Lymph Node-Resident DCs in Peripheral T-Cell Tolerance and Immunity, Trends Immunol., 2004, vol. 25, pp. 655–658.

    PubMed  CAS  Google Scholar 

  109. Bedford, P.A., Burke, F., Stagg, A.J., and Knight, S.C., Dendritic Cells Derived from Bone Marrow Cells Fail to Acquire and Present Major Histocompatibiiity Complex Antigens from Other Dendritic Cells, Immunology, 2008. [Epub Ahead of Print].

  110. De Jong, E.C., Smits, H.H., and Kapsenberg, M.L., Dendritic Cell-Mediated T Cell Polarization, Springer Semin. Immunopathol., 2005, vol. 26, pp. 289–307.

    PubMed  Google Scholar 

  111. Pulendran, B., Smith, J.L., Caspary, G., Brasel, K., Pettit, D., Maraskovsky, E., and Maliszewski, C.R., Distinct Dendritic Cell Subsets Differentially Regulate the Class of Immune Response in Vivo, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 1036–1041.

    PubMed  CAS  Google Scholar 

  112. Liu, Y.J., Kanzler, H., Soumelis, V., and Gilliet, M., Dendritic Cell Lineage, Plasticity and Cross-Regulation, Nat. Immunol., 2001, vol. 2, pp. 585–589.

    PubMed  CAS  Google Scholar 

  113. Schuhbauer, D.M., Mitchison, N.A., and Mueller, B., Interaction within Clusters of Dendritic Cells and Helper T Cells during Initial Th1/Th2 Commitment, Eur. J. Immunol., 2000, vol. 30, pp. 1255–1262.

    PubMed  CAS  Google Scholar 

  114. Shuford, W.W., Klussman, K., Tritchler, D.D., Loo, D.T., Chalupny, J., Siadak, A.W., Brown, T.J., Emswiler, J., Raecho, H., Larsen, C.P., Pearson, T.C., Ledbetter, J.A., Aruffo, A., and Mittler, R.S., 4-1BB Costimulatory Signals Preferentially Induce CD8+ T Cell Proliferation and Lead to the Amplification in Vivo of Cytotoxic T Cell Responses, J. Exp. Med., 1997, vol. 186, pp. 47–55.

    PubMed  CAS  Google Scholar 

  115. Ruedl, C., Kopf, M., and Bachmann, M.F., CD8+ T Cells Mediate CD40-Independent Maturation of Dendritic Cells in Vivo, J. Exp. Med., 1999, vol. 189, pp. 1875–1884.

    PubMed  CAS  Google Scholar 

  116. Lange, C., Durr, M., Doster, H., Melms, A., and Bischof, F., Dendritic Cell-Regulatory T-Cell Interactions Control Self-Directed Immunity, Immunol. Cell. Biol., 2007, vol. 85, pp. 575–581.

    PubMed  CAS  Google Scholar 

  117. Anderson, G., Partington, K.M., and Jenkinson, E.J., Differential Effects of Peptide Diversity and Stromal Cell Type in Positive and Negative Selection in the Thymus, J. Immunol., 1998, vol. 161, pp. 6599–6603.

    PubMed  CAS  Google Scholar 

  118. Brocker, T., Riedinger, M., and Karjalainen, K., Targeted Expression of Major Histocompatibility Complex (MHC) Class II Molecules Demonstrates That Dendritic Cells Can Induce Negative but Not Positive Selection of Thymocytes in Vivo, J. Exp. Med., 1997, vol. 185, pp. 541–550.

    PubMed  CAS  Google Scholar 

  119. Gallegos, A.M. and Bevan, M.J., Central Tolerance to Tissue-Specific Antigens Mediated by Direct and Indirect Antigen Presentation, J. Exp. Med., 2004, vol. 200, pp. 1039–1049.

    PubMed  CAS  Google Scholar 

  120. Millet, V., Naquet, P., and Guinamard, R.R., Intercellular MHC Transfer between Thymic Epithelial and Dendritic Cells, Eur. J. Immunol., 2008, vol. 38, pp. 1257–1263.

    PubMed  CAS  Google Scholar 

  121. Yasutomo, K., Lucas, B., and Germain, R.N., TCR Signaling for Initiation and Completion of Thymocyte Positive Selection Has Distinct Requirements for Ligand Quality and Presenting Cell Type, J. Immunol., 2000, vol. 165, pp. 3015–3022.

    PubMed  CAS  Google Scholar 

  122. Cannarile, M.A., Decanis, N., van Meerwijk, J.P., and Brocker, T., The Role of Dendritic Cells in Selection of Classical and Nonclassical CD8+ T Cells in Vivo, J. Immunol., 2004, vol. 173, pp. 4799–4805.

    PubMed  CAS  Google Scholar 

  123. Goldschneider, I. and Cone, R.E., A Central Role for Peripheral Dendritic Cells in the Induction of Acquired Thymic Tolerance, Trends. Immunol., 2003, vol. 24, pp. 77–81.

    PubMed  CAS  Google Scholar 

  124. Watanabe, N., Wang, Y.H., Lee, H.K., Ito, T., Wang, Y.H., Cao, W., and Liu, Y.J., Hassall’s Corpuscles Instruct Dendritic Cells to Induce CD4+Cd25+ Regulatory T Cells in Human Thymus, Nature, 2005, vol. 436, pp. 1181–1185.

    PubMed  CAS  Google Scholar 

  125. Bouneaud, C., Kourilsky, P., and Bousso, P., Impact of Negative Selection on the T Cell Repertoire Reactive to a Self-Peptide: A Large Fraction of T Cell Clones Escapes Clonal Detection, Immunity, 2000, vol. 13, pp. 829–840.

    PubMed  CAS  Google Scholar 

  126. Schwartz, R.H., T Cell Anergy, Annu. Rev. Immunol., 2003, vol. 21, pp. 305–334.

    PubMed  CAS  Google Scholar 

  127. Perona-Wright, G., Anderton, S.M., Howie, S.E., and Gray, D., IL-10 Permits Transient Activation of Dendritic Cells to Tolerize T Cells and Protect from Central Nervous System Autoimmune Disease, Int. Immunol., 2007, vol. 19, pp. 1123–1134.

    PubMed  CAS  Google Scholar 

  128. McBride, J.M., Jung, T., De Vries, J.E., and Aversa, G., IL-10 Alters DC Function via Modulation of Cell Surface Molecules Resulting in Impaired T-Cell Responses, Cell. Immunol., 2002, vol. 215, pp. 162–172.

    PubMed  CAS  Google Scholar 

  129. Munn, D.H., Sharma, M.D., Lee, J.R., Jhaver, K.G., Johnson, T.S., Keskin, D.B., Marshall, B., Chandler, P., Antonia, S.J., Burgess, R., Slingluff, C.L., Jr., and Mellor, A.L., Potential Regulatory Function of Human Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase, Science, 2002, vol. 297, pp. 1867–1870.

    PubMed  CAS  Google Scholar 

  130. Terness, P., Bauer, T.M., Rose, L., Dufter, C., Watzlik, A., Simon, H., and Opelz, G., Inhibition of Allogeneic T Cell Proliferation by Indoleamine 2,3-Dioxygenase-Expressing Dendritic Cells: Mediation of Suppression by Tryptophan Metabolites, J. Exp. Med., 2002, vol. 196, pp. 447–457.

    PubMed  CAS  Google Scholar 

  131. Dong, H., Zhu, G., Tamada, K., and Chen, L., B7-H1, a Third Member of the B7 Family, Co-Stimulates T-Cell Proliferation and Interleukin-10 Secretion, Nat. Med., 1999, vol. 5, pp. 1365–1369.

    PubMed  CAS  Google Scholar 

  132. Freeman, G.J., Long, A.J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L.J., Malenkovich, N., Okazaki, T., Byrne, M.C., Horton, H.F., Fouser, L., Carter, L., Iing, V., Bowman, M.R., Carreno, B.M., Coliins, M., Wood, C.R., and Honjo, T., Engagement of the PD-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation, J. Exp. Med., 2000, vol. 192, pp. 1027–1034.

    PubMed  CAS  Google Scholar 

  133. Radhakrishnan, S., Celis, E., and Pease, L.R., B7-DC Cross-Linking Restores Antigen Uptake and Augments Antigen-Presenting Cell Function by Matured Dendritic Cells, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 11438–11443.

    PubMed  CAS  Google Scholar 

  134. Amend, B., Doster, H., Lange, C., Dubois, E., Kalbacher, H., Melms, A., and Bischof, F., Induction of Autoimmunity by Expansion of Autoreactive CD4+CD62Llow Cells in Vivo, J. Immunol., 2006, vol. 177, pp. 4384–4390.

    PubMed  CAS  Google Scholar 

  135. Tseng, S.Y., Otsuji, M., Gorski, K., Huang, X., Slansky, J.E., Pai, S.I., Shalabi, A., Shin, T., Pardoll, D.M., and Tsuchiya, H., B7-DC, a New Dendritic Cell Molecule with Potent Costimulatory Properties for T Cells, J. Exp. Med., 2001, vol. 193, pp. 839–846.

    PubMed  CAS  Google Scholar 

  136. Askenasy, N., Kaminitz, A., and Yarkoni, S., Mechanisms of T Regulatory Cell Function, Autoimmun. Rev., 2008, vol. 7, pp. 370–375.

    PubMed  CAS  Google Scholar 

  137. Yamazaki, S., Bonito, A.J., Spisek, R., Dhodapkar, M., Inaba, K., and Steinman, R.M., Dendritic Cells Are Specialized Accessory Cells Along with TGF-for the Differentiation of Foxp3+ CD4+ Regulatory T Cells from Peripheral Foxp3 Precursors, Blood, 2007, vol. 110, pp. 4293–4302.

    PubMed  CAS  Google Scholar 

  138. Tarbell, K.V., Yamazaki, S., Olson, K., Toy, P., and Steinman, R.M., CD25+ CD4+ T Cells, Expanded with Dendritic Cells Presenting a Single Autoantigenic Peptide, Suppress Autoimmune Diabetes, J. Exp. Med., 2004, vol. 199, pp. 1467–1477.

    PubMed  CAS  Google Scholar 

  139. Walker, L.S., Chodos, A., Eggena, M., Dooms, H., and Abbas, A.K., Antigen-Dependent Proliferation of CD4+ CD25+ Regulatory T Cells in Vivo, J. Exp. Med., 2003, vol. 198, pp. 249–258.

    PubMed  CAS  Google Scholar 

  140. Lin, C.H. and Hunig, T., Efficient Expansion of Regulatory T Cells in Vitro and in Vivo with a CD28 Superagonist, Eur. J. Immunol., 2003, vol. 33, pp. 626–638.

    PubMed  CAS  Google Scholar 

  141. Fallarino, F., Bianchi, R., Orabona, C., Vacca, C., Belladonna, M.L., Fioretti, M.C., Serreze, D.V., Grohmann, U., and Puccetti, P., CTLA-4-Ig Activates Forkhead Transcription Factors and Protects Dendritic Cells from Oxidative Stress in Nonobese Diabetic Mice, J. Exp. Med., 2004, vol. 200, pp. 1051–1062.

    PubMed  CAS  Google Scholar 

  142. Rutella, S., Danese, S., and Leone, G., Tolerogenic Dendritic Cells: Cytokine Modulation Comes of Age, Blood, 2006, vol. 108, pp. 1435–1440.

    PubMed  CAS  Google Scholar 

  143. Svensson, M., Maroof, A., Ato, M., and Kaye, P.M., Stromal Cells Direct Local Differentiation of Regulatory Dendritic Cells, Immunity, 2004, vol. 21, pp. 805–816.

    PubMed  CAS  Google Scholar 

  144. Tang, H., Guo, Z., Zhang, M., Wang, J., Chen, G., and Cao, X., Endothelial Stroma Programs Hematopoietic Stem Cells to Differentiate into Regulatory Dendritic Cells through IL-10, Blood, 2006, vol. 108, pp. 1189–1197.

    PubMed  CAS  Google Scholar 

  145. Zhang, M., Tang, H., Guo, Z., An, H., Zhu, X., Song, W., Guo, J., Huang, X., Chen, T., Wang, J., and Cao, X., Splenic Stroma Drives Mature Dendritic Cells to Differentiate ito Regulatory Dendritic Cells, Nat. Immunol., 2004, vol. 5, pp. 1124–1133.

    PubMed  CAS  Google Scholar 

  146. Bjorck, P., Flores-Romo, L., and Liu, Y.J., Human Interdigitating Dendritic Cells Directly Stimulate CD40-Activated Naive B Cells, Eur. J. Immunol., 1997, vol. 27, pp. 1266–1274.

    PubMed  CAS  Google Scholar 

  147. Dubois, B., Bridon, J.M., Fayette, J., Barthelemy, C., Banchereau, J., Caux, C., and Briere, F., Dendritic Cells Directly Modulate B Cell Growth and Differentiation, J. Leukoc. Biol., 1999, vol. 66, pp. 224–230.

    PubMed  CAS  Google Scholar 

  148. Dubois, B., Massacrier, C., Vanberviiet, B., Fayette, J., Briere, F., Banchereau, J., and Caux, C., Critical Role of IL-12 in Dendritic Cell-Induced Differentiation of Naive B Lymphocytes, J. Immunol., 1998, vol. 161, pp. 2223–2231.

    PubMed  CAS  Google Scholar 

  149. Johansson, B., Ingvarsson, S., Bjorck, P., and Borrebaeck, C.A., Human Interdigitating Dendritic Cells Induce Isotype Switching and IL-13-Dependent IgM Production in CD40-Activated Naive B Cells, J. Immunol., 2000, vol. 164, pp. 1847–1854.

    PubMed  CAS  Google Scholar 

  150. Obayashi, K., Doi, T., and Koyasu, S., Dendritic Cells Suppress IgE Production in B Cells, Int. Immunol., 2007, vol. 19, pp. 217–226.

    PubMed  CAS  Google Scholar 

  151. Wykes, M., Pombo, A., Jenkins, C., and MacPherson, G.G., Dendritic Cells Interact Directly with Naive B Lymphocytes to Transfer Antigen and Initiate Class Switching in a Primary T Dependent Response, J. Immunol., 1998, vol. 161, pp. 1313–1319.

    PubMed  CAS  Google Scholar 

  152. Colino, J., Shen, Y., and Snapper, C.M., Dendritic Cells Pulsed with Intact Streptococcus pneumoniae Elicit Both Protein- and Polysaccharide-Specific Immunoglobuiin Isotype Responses in Vivo through Distinct Mechanisms, J. Exp. Med., 2002, vol. 195, pp. 1–13.

    PubMed  CAS  Google Scholar 

  153. Balazs, M., Martin, F., Zhou, T., and Kearney, J., Blood Dendritic Cells Interact with Splenic Marginal Zone B Cells to Initiate T-Independent Immune Responses, Immunity, 2002, vol. 17, pp. 341–352.

    PubMed  CAS  Google Scholar 

  154. Bergtold, A., Desai, D.D., Gavhane, A., and Clynes, R., Cell Surface Recycling of Internalized Antigen Permits Dendritic Cell Priming of B Cells, Immunity, 2005, vol. 23, pp. 503–514.

    PubMed  CAS  Google Scholar 

  155. Mocikat, R., Braumuller, H., Gumy, A., Egeter, O., Ziegler, H., Reusch, U., Bubeck, A., Louis, J., Mailhammer, R., Riethmuller, G., Koszinowski, U., and Röcken, M., Natural Killer Cells Activated by MHC Class I Low Targets Prime Dendritic Cells to Induce Protective CD8 T Cell Responses, Immunity, 2003, vol. 19, pp. 561–569.

    PubMed  CAS  Google Scholar 

  156. Martin-Fontecha, A., Thomsen, L.L., Brett, S., Gerard, C., Lipp, M., Lanzavecchia, A., and Sallusto, F., Induced Recruitment of NK Cells to Lymph Nodes Provides IFN-Gamma for T(H)1 Priming, Nat. Immunol., 2004, vol. 5, pp. 1260–1265.

    PubMed  CAS  Google Scholar 

  157. Fernandez, N.C., Lozier, A., Flament, C., Ricciardi-Castagnoli, P., Bellet, D., Suter, M., Perricaudet, M., Tursz, T., Maraskovsky, E., and Zitvogel, L., Dendritic Cells Directly Trigger NK Cell Functions: Cross-Talk Relevant in Innate Anti-Tumor Immune Responses in Vivo, Nat. Med., 1999, vol. 5, pp. 405–411.

    PubMed  CAS  Google Scholar 

  158. Münz, C., Dao, T., Ferlazzo, G., De Cos, M.A., Goodman, K., and Young, J.W., Mature Myeloid Dendritic Cell Subsets Have Distinct Roles for Activation and Viability of Circulating Human Natural Killer Cells, Blood, 2005, vol. 105, pp. 266–273.

    PubMed  Google Scholar 

  159. Gerosa, F., Gobbi, A., Zorzi, P., Burg, S., Briere, F., Carra, G., and Trinchieri, G., The Reciprocal Interaction of NK Cells with Plasmacytoid or Myeloid Dendritic Cells Profoundly Affects Innate Resistance Functions, J. Immunol., 2005, vol. 174, pp. 727–734.

    PubMed  CAS  Google Scholar 

  160. Fujii, S., Shimizu, K., Hemmi, H., and Steinman, R.M., Innate Valpha14+ Natural Killer T Cells Mature Dendritic Cells, Leading to Strong Adaptive Immunity, Immunol. Rev., 2007, vol. 220, pp. 183–198.

    PubMed  CAS  Google Scholar 

  161. Fujii, S., Liu, K., Smith, C., Bonito, A.J., and Steinman, R.M., The Linkage of Innate to Adaptive Immunity via Maturing Dendritic Cells in Vivo Requires CD40 Ligation in Addition to Antigen Presentation and CD80/86 Costimulation, J. Exp. Med., 2004, vol. 199, pp. 1607–1618.

    PubMed  CAS  Google Scholar 

  162. Hermans, I.F., Silk, J.D., Gileadi, U., Salio, M., Mathew, B., Ritter, G., Schmidt, R., Harris, A.L., Old, L., and Cerundolo, V., NKT Cells Enhance CD4+ and CD8+ T Cell Responses to Soluble Antigen in Vivo Through Direct Interaction with Dendritic Cells, J. Immunol., 2003, vol. 171, pp. 5140–5147.

    PubMed  CAS  Google Scholar 

  163. Conti, L., Casetti, R., Cardone, M., Varano, B., Martino, A., Belardelli, F., Poccia, F., and Gessani, S., Reciprocal Activating Interaction between Dendritic Cells and Pamidronate-Stimulated Gamma/Delta T Cells: Role of CD86 and Inflammatory Cytokines, J. Immunol., 2005, vol. 174, pp. 252–260.

    PubMed  CAS  Google Scholar 

  164. Leslie, D.S., Vincent, M.S., Spada, F.M., Das, H., Sugita, M., Morita, C.T., and Brenner, M.B., CD1-Mediated Gamma/Delta T Cell Maturation of Dendritic Cells, J. Exp. Med., 2002, vol. 196, pp. 1575–1584.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Khochenkov.

Additional information

Original Russian Text © D.A. Khochenkov, 2008, published in Biologicheskie Membrany, 2008, Vol. 25, No. 6, pp. 403–419.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khochenkov, D.A. Biology of dendritic cells. Biochem. Moscow Suppl. Ser. A 2, 296–311 (2008). https://doi.org/10.1134/S1990747808040028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747808040028

Keywords

Navigation