Biology of dendritic cells

  • D. A. Khochenkov


Dendritic cells (DC) play a key role in adaptive immune response. By virtue of their extremely wide distribution and high populational diversity, DC interact with almost all types of immune cells linking innate and adaptive immunity. Due to great diversity of receptors, DC recognize a lot of pathogenic microorganisms and namely DC are responsible for the subsequent immune response. Inflammation triggers maturation of DC, which manifests itself in intracellular rearrangement and in appearance of costimulating molecules (CD40, CD80 and CD86) on DC surface. DC capture and process antigens keeping high amount of immunogenic peptides which are then presented to naive lymphocytes and induce their differentiation into effector cells. Depending on pathogen type and cytokine microenvironment, DC induce polarization of immune responses. In the absence of proinflammatory factors DC induce tolerance. In addition, DC play a crucial role in T-lymphocyte selection and Treg formation. The basic traits of DC biology are reviewed.


Dendritic Cell Major Histocompatibility Complex Class Supplement Series Immature Dendritic Cell Dritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





antigen-presenting cells


dendritic cells








natural killer cells


natural killer T-lymphocytes




Plasmacytoid dendritic cells


regulatory T-lymphocytes


transforming growth factor


T-cell receptor


tumor necrosis factor


endoplasmic reticulum


Toll-like receptors


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shortman, K. and Liu Y.J., Mouse and Human Dendritic Cell Subtypes, Nat. Rev. Immunol., 2002, vol. 2, pp. 151–161.PubMedGoogle Scholar
  2. 2.
    Ardavin, C., Wu, L., Li, C.L., and Shortman, K., Thymic Dendritic Cells and T Cells Develop Simultaneously within the Thymus from a Common Precursor Population, Nature, 1993, vol. 362, pp. 761–763.PubMedGoogle Scholar
  3. 3.
    Izon, D., Rudd, K., DeMuth, W., Pear, W.S., Clendenin, C., Lindsley, R.C., and Allman, D., A Common Pathway for Dendritic Cell and Early B Cell Development, J. Immunol., 2001, vol. 167, pp. 1387–1392.PubMedGoogle Scholar
  4. 4.
    Naik, S., Vremec, D., Wu, L., O’Keeffe, M., and Shortman, K., CD8alpha+ Mouse Spleen Dendritic Cells Do Not Originate from the CD8alpha Dendritic Cell Subset, Blood, 2003, vol. 102, pp. 601–604.PubMedGoogle Scholar
  5. 5.
    Manz, M.G., Traver, D., Miyamoto, T., Weissman, I.L., and Akashi, K., Dendritic Cell Potentials of Early Lymphoid and Myeloid Progenitors, Blood, 2001, vol. 97, pp. 3333–3341.PubMedGoogle Scholar
  6. 6.
    Del Hoyo, G.M., Martín, P., Vargas, H.H., Ruiz, S., Arias, C.F., and Ardavín, C., Characterization of a Common Precursor Population for Dendritic Cells, Nature, 2002, vol. 415, pp. 1043–1047.PubMedGoogle Scholar
  7. 7.
    Onai, N., Obata-Onai, A., Schmid, M.A., Ohteki, T., Jarrossay, D., and Manz, M.G., Identification of Clonogenic Common Flt3+M-CSFR+ Plasmacytoid and Conventional Dendritic Cell Progenitors in Mouse Bone Marrow, Nat. Immunol., 2007, vol. 8, pp. 1207–1216.PubMedGoogle Scholar
  8. 8.
    Naik, S.H., Sathe, P., Park, H.Y., Metcalf, D., Proietto, A.I., Dakic, A., Carotta, S., O’Keeffe, M., Bahlo, M., Papenfuss, A., Kwak, J.Y., Wu, L., and Shortman, K., Development of Plasmacytoid and Conventional Dendritic Cell Subtypes from Single Precursor Cells Derived in Vitro and in Vivo, Nat. Immunol., 2007, vol. 8, pp. 1217–1226.PubMedGoogle Scholar
  9. 9.
    Onai, N., Obata-Onai, A., Schmid, M.A., and Manz, M.G., Flt3 in Regulation of Type I Interferon-Producing Cell and Dendritic Cell Development, Ann. NY. Acad. Sci., 2007, vol. 1106, pp. 253–261.PubMedGoogle Scholar
  10. 10.
    Wu, L. and Shortman, K., Heterogeneity of Thymic Dendritic Cells, Semin. Immunol., 2005, vol. 17, pp. 304–312.PubMedGoogle Scholar
  11. 11.
    Saunders, D., Lucas, K., Ismaili, J., Wu, L., Maraskovsky, E., Dunn, A., and Shortman, K., Dendritic Cell Development in Culture from Thymic Precursor Cells in the Absence of Granulocyte/Macrophage Colony-Stimulating Factor, J. Exp. Med., 1996, vol. 184, pp. 2185–2196.PubMedGoogle Scholar
  12. 12.
    Wu, L., Li, C.L., and Shortman, K., Thymic Dendritic Cell Precursors: Relationship to the T Lymphocyte Lineage and Phenotype of the Dendritic Cell Progeny, J. Exp. Med., 1996, vol. 184, pp. 903–911.PubMedGoogle Scholar
  13. 13.
    Donskoy, E. and Goldschneider, I., Two Developmentally Distinct Populations of Dendritic Cells Inhabit the Adult Mouse Thymus: Demonstration by Differential Importation of Hematogenous Precursors under Steady State Conditions, J. Immunol., 2003, vol. 170, pp. 3514–3521.PubMedGoogle Scholar
  14. 14.
    Cyster, J.G., Ansel, K.M., Reif, K., Ekland, E.H., Hyman, P.L., Tang, H.L., Luther, S.A., and Ngo, V.N., Follicular Stromal Cells and Lymphocyte Homing to Follicles, Immunol. Rev., 2000, vol. 176, pp. 181–193.PubMedGoogle Scholar
  15. 15.
    Murakami, T., Chen, X., Hase, K., Sakamoto, A., Nishigaki, C., and Ohno, H., Splenic CD19-CD35+B220+ Cells Function As an Inducer of Follicular Dendritic Cell Network Formation, Blood, 2007, vol. 110, pp. 1215–1224.PubMedGoogle Scholar
  16. 16.
    Dieu, M.C., Vanbervliet, B., Vicari, A., Bridon, J.M., Oldham, E., Ait-Yahia, S., Briere, F., Zlotnik, A., Lebecque, S., and Caux, C., Selective Recruitment of Immature and Mature Dendritic Cells by Distinct Chemokines Expressed in Different Anatomic Sites, J. Exp. Med., 1998, vol. 188, pp. 373–386.PubMedGoogle Scholar
  17. 17.
    Weiss, J.M., Renkl, A.C., Maier, C.S., Kimmig, M., Liaw, L., Ahrens, T., Kon, S., Maeda, M., Hotta, H., Uede, T., and Simon, J.C., Osteopontin Is Involved in the Initiation of Cutaneous Contact Hypersensitivity by Inducing Langerhans and Dendritic Cell Migration to Lymph Nodes, J. Exp. Med., 2001, vol. 194, pp. 1219–1229.PubMedGoogle Scholar
  18. 18.
    Crowley, M.T., Inaba, K., Witmer-Pack, M.D., Gezelter, S., and Steinman, R.M., Use of the Fluorescence Activated Cell Sorter to Enrich Dendritic Cells from Mouse Spleen, J. Immunol. Methods, 1990, vol. 133, pp. 55–66.PubMedGoogle Scholar
  19. 19.
    Villadangos, J.A., Schnorrer, P., and Wilson, N.S., Control of MHC Class II Antigen Presentation in Dendritic Cells: A Balance between Creative and Destructive Forces, Immunol. Rev., 2005, vol. 207, pp. 191–205.PubMedGoogle Scholar
  20. 20.
    Vremec, D., Pooley, J., Hochrein, H., Wu, L., and Shortman, K., CD4 and CD8 Expression by Dendritic Cell Subtypes in Mouse Thymus and Spleen, J. Immunol., 2000, vol. 64, pp. 2978–2986.Google Scholar
  21. 21.
    O’Doherty, U., Peng, M., Gezelter, S., Swiggard, W.J., Betjes, M., Bhardwaj, N., and Steinman, R.M., Human Blood Contains Two Subsets of Dendritic Cells, One Immunologically Mature and the Other Immature, Immunology, 1994, vol. 82, pp. 487–493.PubMedGoogle Scholar
  22. 22.
    Asselin-Paturel, C., Brizard, G., Pin, J.J., Briere, F., and Trinchieri, G., Mouse Strain Differences in Plasmacytoid Dendritic Cell Frequency and Function Revealed by a Novel Monoclonal Antibody, J. Immunol., 2003, vol. 171, pp. 6466–6477.PubMedGoogle Scholar
  23. 23.
    Nakano, H., Yanagita, M., and Gunn, M.D., CD11c+B220+Gr-1+ Cells In Mouse Lymph Nodes and Spleen Display Characteristics of Plasmacytoid Dendritic Cells, J. Exp. Med., 2001, vol. 194, pp. 1171–1178.PubMedGoogle Scholar
  24. 24.
    Barchet, W., Cella, M., and Colonna, M., Plasmacytoid Dendritic Cells—Virus Expert of Innate Immunity, Semin. Immunol., 2005, vol. 17, pp. 253–261.PubMedGoogle Scholar
  25. 25.
    Dalod, M., Hamilton, T., Salomon, R., Salazar-Mather, T.P., Henry, S.C., Hamilton, J.D., and Biron, C.A., Dendritic Cell Responses to Early Murine Cytomegalovirus Infection: Subset Functional Specialization and Differential Regulation by Interferon Alpha/Beta, J. Exp. Med., 2003, vol. 197, pp. 885–898.PubMedGoogle Scholar
  26. 26.
    Cella, M., Facchetti, F., Lanzavecchia, A., and Colonna, M., Plasmacytoid Dendritic Cells Activated by Influenza Virus and CD40l Drive a Potent TH1 Polarization, Nat. Immunol., 2000, vol. 1, pp. 305–310.PubMedGoogle Scholar
  27. 27.
    Poeck, H., Wagner, M., Battiany, J., Rothenfusser, S., Wellisch, D., Hornung, V., Jahrsdorfer, B., Giese, T., Endres, S., and Hartmann, G., Plasmacytoid Dendritic Cells, Antigen, and CpG-C License Human B Cells for Plasma Cell Differentiation and Immunoglobulin Production in the Absence of T-Cell Help, Blood, 2004, vol. 103, pp. 3058–3064.PubMedGoogle Scholar
  28. 28.
    Trombetta, E.S. and Mellman, I., Cell Biology of Antigen Processing in Vitro and in Vivo, Annu. Rev. Immunol., 2005, vol. 23, pp. 975–1028.PubMedGoogle Scholar
  29. 29.
    Conner, S.D. and Schmid, S.L., Regulated Portals of Entry into the Cell, Nature, 2003, vol. 422, pp. 37–44.PubMedGoogle Scholar
  30. 30.
    Hall, A. and Nobes, C.D., Rho GTPases: Molecular Switches That Control the Organization and Dynamics of the Actin Cytoskeleton, Phil. Trans. R. Soc. Lond. B. Biol. Sci., 2000, vol. 355, pp. 965–970.Google Scholar
  31. 31.
    Jurgens, M., Wollenberg, A., Hanau, D, De La Salle, H., and Bieber, T., Activation of Human Epidermal Langerhans Cells by Engagement of the High Affinity Receptor for IgE, FcɛRI, J. Immunol., 1995, vol. 155, pp. 5184–5189.PubMedGoogle Scholar
  32. 32.
    Jiang, W., Swiggard, W.J., Heufler, C., Peng, M., Mirza, A., Steinman, R.M., and Nussenzweig, M.C., The Receptor DEC-205 Expressed by Dendritic Cells and Thymic Epithelial Cells Is Involved in Antigen Processing, Nature, 1995, vol. 375, pp. 151–155.PubMedGoogle Scholar
  33. 33.
    Engering, A.J., Cella, M., Fluitsma, D., Brockhaus, M., Hoefsmit, E.C., Lanzavecchia, A., and Pieters, J., The Mannose Receptor Functions As a High Capacity and Broad Specificity Antigen Receptor in Human Dendritic Cells, Eur. J. Immunol., 1997, vol. 27, pp. 2417–2425.PubMedGoogle Scholar
  34. 34.
    Basu, S., Binder, R.J., Ramalingam, T., and Srivastava, P.K., CD91 Is a Common Receptor for Heat Shock Proteins gp96, hsp90, hsp70, and Calreticulin, Immunity, 2001, vol. 14, pp. 303–313.PubMedGoogle Scholar
  35. 35.
    Blander, J.M, and Medzhitov, R., Regulation of Phagosome Maturation by Signals from Toll-Like Receptors, Science, 2004, vol. 304, pp. 1014–1018.PubMedGoogle Scholar
  36. 36.
    Reis, E., Sousa, C., Stahl, P.D., and Austyn, J.M., Phagocytosis of Antigens by Langerhans Cells in Vitro, J. Exp. Med., 1993, vol. 178, pp. 509–519.Google Scholar
  37. 37.
    Bonifaz, L., Bonnyay, D., Mahnke, K., Rivera, M., Nussenzweig, M.C., and Steinman, R.M., Efficient Targeting of Protein Antigen to the Dendritic Cell Receptor DEC-205 in the Steady State Leads to Antigen Presentation on Major Histocompatibility Complex Class I Products and Peripheral CD8+ T Cell Tolerance, J. Exp. Med., 2002, vol. 196, pp. 1627–1638.PubMedGoogle Scholar
  38. 38.
    Stambach, N.S. and Taylor, M.E., Characterization of Carbohydrate Recognition by Langerin, a C-Type Lectin of Langerhans Cells, Glycobiology, 2003, vol. 13, pp. 401–410.PubMedGoogle Scholar
  39. 39.
    Sallusto, F., Cella, M., Danieli, C., and Lanzavecchia, A., Dendritic Cells Use Macropinocytosis and the Mannose Receptor to Concentrate Macromolecules in the Major Histocompatibility Complex Class II Compartment: Downregulation by Cytokines and Bacterial Products, J. Exp. Med., 1995, vol. 182, pp. 389–400.PubMedGoogle Scholar
  40. 40.
    Steele-Mortimer, O., Knodler, L.A., and Finlay, B.B., Poisons, Ruffles and Rockets: Bacterial Pathogens and the Host Cell Cytoskeleton, Traffic, 2000, vol. 1, pp. 107–118.PubMedGoogle Scholar
  41. 41.
    Sinai, A.P. and Joiner, K.A., Safe Haven: The Cell Biology of Nonfusogenic Pathogen Vacuoles, Annu. Rev. Microbiol., 1997, vol. 51, pp. 415–462.PubMedGoogle Scholar
  42. 42.
    Gallucci, S. and Matzinger, P., Danger Signals: SOS to the Immune System, Curr. Opin. Immunol., 2001, vol. 13, pp. 114–119.PubMedGoogle Scholar
  43. 43.
    Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., and Amigorena, S., Antigen Presentation and T Cell Stimulation by Dendritic Cells, Annu. Rev. Immunol., 2002, vol. 20, pp. 621–267.PubMedGoogle Scholar
  44. 44.
    Medzhitov, R. and Janeway, C., Jr., Innate Immunity, N. Engl. J. Med., 2000, vol. 343, pp. 338–344.PubMedGoogle Scholar
  45. 45.
    Aderem, A. and Ulevitch, R.J., Toll-Like Receptors in the Induction of the Innate Immune Response, Nature, 2000, vol. 406, pp. 782–787.PubMedGoogle Scholar
  46. 46.
    Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B., and Palucka, K., Immunobiology of Dendritic Cells, Annu. Rev. Immunol., 2000, vol. 18, pp. 767–811.PubMedGoogle Scholar
  47. 47.
    Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., van Kooten, C., Durand, I., and Banchereau, J., Activation of Human Dendritic Cells through CD40 Crosslinking, J. Exp. Med., 1994, vol. 180, pp. 1263–1272.PubMedGoogle Scholar
  48. 48.
    Ohshima, Y., Tanaka, Y., Tozawa, H., Takahashi, Y., Maliszewski, C., and Delespesse, G., Expression and Function of OX40 Ligand on Human Dendritic Cells, J. Immunol., 1997, vol. 159, pp. 3838–3848.PubMedGoogle Scholar
  49. 49.
    Regnault, A., Lankar, D., Lacabanne, V., Rodriguez, A., Thery, C., Rescigno, M., Saito, T., Verbeek, S., Bonnerot, C., Ricciardi-Castagnoli, P., and Amigorena, S., Fcgamma Receptor-Mediated Induction of Dendritic Cell Maturation and Major Histocompatibility Complex Class I-Restricted Antigen Presentation after Immune Complex Internalization, J. Exp. Med., 1999, vol. 189, pp. 371–380.PubMedGoogle Scholar
  50. 50.
    Sauter, B., Albert, M.L., Francisco, L., Larsson, M., Somersan, S., and Bhardwaj, N., Consequences of Cell Death: Exposure to Necrotic Tumor Cells, but Not Primary Tissue Cells or Apoptotic Cells, Induces the Maturation of Immunostimulatory Dendritic Cells, J. Exp. Med., 2000, vol. 191, pp. 423–434.PubMedGoogle Scholar
  51. 51.
    Singh-Jasuja, H., Scherer, H.U., Hilf, N., Arnold-Schild, D., Rammensee, H.G., Toes, R.E., and Schild, H., The Heat Shock Protein gp96 Induces Maturation of Dendritic Cells and Down-Regulation of Its Receptor, Eur. J. Immunol., 2000, vol. 30, pp. 2211–2215.PubMedGoogle Scholar
  52. 52.
    Nobes, C. and Marsh, M., Dendritic Cells: New Roles for CDc42 and Rac in Antigen Uptake?, Curr. Biol., 2000, vol. 10, pp. 739–741.Google Scholar
  53. 53.
    West, M.A., Prescott, A.R., Eskelinen, E.L., Ridley, A.J., and Watts, C., Rac Is Required for Constitutive Macropinocytosis by Dendritic Cells but Does Not Control Its Downregulation, Curr. Biol., 2000, vol. 10, pp. 839–848.PubMedGoogle Scholar
  54. 54.
    Garrett, W.S., Chen, L.M., Kroschewski, R., Ebersold, M., Turley, S., Trombetta, S., Galan, J.E., and Mellman, I., Developmental Control of Endocytosis in Dendritic Cells by Cdc42, Cell, 2000, vol. 102, pp. 325–334.PubMedGoogle Scholar
  55. 55.
    Cella, M., Engering, A., Pinet, V., Pieters, J., and Lanzavecchia, A., Inflammatory Stimuli Induce Accumulation of MHC Class II Complexes on Dendritic Cells, Nature, 1997, vol. 388, pp. 782–787.PubMedGoogle Scholar
  56. 56.
    Winzler, C., Rovere, P., Rescigno, M., Granucci, F., Penna, G., Adorini, L., Zimmermann, V.S., Davoust, J., and Ricciardi-Castagnoli, P., Maturation Stages of Mouse Dendritic Cells in Growth Factor Dependent Long-Term Cultures, J. Exp. Med., 1997, vol. 185, pp. 317–328.PubMedGoogle Scholar
  57. 57.
    Sallusto, F. and Lanzavecchia, A., Understanding Dendritic Cell and T-Lymphocyte Traffic through the Analysis of Chemokine Receptor Expression, Immunol. Rev., 2000, vol. 177, pp. 134–140.PubMedGoogle Scholar
  58. 58.
    Tang, H.L. and Cyster, J.G., Chemokine Upregulation and Activated T Cell Attraction by Maturing Dendritic Cells, Science, 1999, vol. 284, pp. 819–822.PubMedGoogle Scholar
  59. 59.
    Piqueras, B., Connolly, J., Freitas, H., Palucka, A.K., and Banchereau, J., Upon Viral Exposure, Myeloid and Plasmacytoid Dendritic Cells Produce 3 Waves of Distinct Chemokines to Recruit Immune Effectors, Blood, 2006, vol. 107, pp. 2613–2618.PubMedGoogle Scholar
  60. 60.
    Mosialos, G., Birkenbach, M., Ayehunie, S., Matsumura, F., Pinkus, G.S., Kieff, E., and Langhoff, E., Circulating Human Dendritic Cells Differentially Express High Levels of a 55-kD Actin-Bundling Protein, Am. J. Pathol., 1996, vol. 148, pp. 593–600.PubMedGoogle Scholar
  61. 61.
    Mosse, C.A., Meadows, L., Luckey, C.J., Kittlesen, D.J., Huczko, E.L., Slingluff, L., Shabanowitz, J., Hunt, D.F., and Engelhard, V.H., The Class I Antigen-Processing Pathway for the Membrane Protein Tyrosinase Involves Translation in the Endoplasmic Reticulum and Processing in the Cytosol, J. Exp. Med., 1998, vol. 187, pp. 37–48.PubMedGoogle Scholar
  62. 62.
    Zarling, A.L., Ficarro, S.B., White, F.M., Shabanowitz, J., Hunt, D.F., and Engelhard, V.H., Phosphorylated Peptides Are Naturally Processed and Presented by Major Histocompatibility Complex Class I Molecules in Vivo, J. Exp. Med., 2000, vol. 192, pp. 1755–1762.PubMedGoogle Scholar
  63. 63.
    Chen, W., Yewdell, J.W., Levine, R.L., and Bennink, J.R., Modification of Cysteine Residues in Vitro and in Vivo Affects the Immunogenicity and Antigenicity of Major Histocompatibility Complex Class I Restricted Viral Determinants, J. Exp. Med., 1999, vol. 189, pp. 1757–1764.PubMedGoogle Scholar
  64. 64.
    Ostankovitch, M., Robila, V., and Engelhard, V.H., Regulated Folding of Tyrosinase in the Endoplasmic Reticulum Demonstrates That Misfolded Full-Length Proteins Are Efficient Substrates for Class I Processing and Presentation, J. Immunol., 2005, vol. 174, pp. 2544–2551.PubMedGoogle Scholar
  65. 65.
    Bates, E.E., Ravel, O., Dieu, M.C., Ho, S., Guret, C., Bridon, J.M., Ait-Yahia, S., Briere, F., Caux, C., Banchereau, J., and Lebecque, S., Identification and Analysis of a Novel Member of the Ubiquitin Family Expressed In Dendritic Cells and Mature B Cells, Eur. J. Immunol., 1997, vol. 27, pp. 2471–2477.PubMedGoogle Scholar
  66. 66.
    Rock, K.L., York, I.A., Saric, T., and Goldberg, A.L., Protein Degradation and the Generation of MHC Class I-Presented Peptides, Adv. Immunol., 2002, vol. 80, pp. 1–70.PubMedGoogle Scholar
  67. 67.
    Cresswell, P., Bangia, N., Dick, T., and Diedrich, G., The Nature of the MHC Class I Peptide Loading Complex, Immunol. Rev., 1999, vol. 172, pp. 21–28.PubMedGoogle Scholar
  68. 68.
    Lautscham, G., Rickinson, A., and Blake, N., TAP-Independent Antigen Presentation on MHC Class I Molecules: Lessons from Epstein-Barr Virus, Microbes Infect., 2003, vol. 5, pp. 291–299.PubMedGoogle Scholar
  69. 69.
    Kleijmeer, M.J., Ossevoort, M.A., van Veen, C.J., van Hellemond, J.J., Neefjes, J.J., Kast, W.M., Meiief, C.J., and Geuze, H.J., MHC Class II Compartments and the Kinetics of Antigen Presentation in Activated Mouse Spleen Dendritic Cells, J. Immunol., 1995, vol. 154, pp. 5715–5724.PubMedGoogle Scholar
  70. 70.
    Castellino, F., Zhong, G., and Germain, R.N., Antigen Presentation by MHC Class II Molecules: Invariant Chain Function, Protein Trafficking, and the Molecular Basis of Diverse Determinant Capture, Hum. Immunol., 1997, vol. 54, pp. 159–169.PubMedGoogle Scholar
  71. 71.
    Pierre, P. and Mellman, I., Developmental Regulation of Invariant Chain Proteolysis Controls MHC Class II Trafficking in Mouse Dendritic Cells, Cell, 1998, vol. 93, pp. 1135–1145.PubMedGoogle Scholar
  72. 72.
    Inaba, K., Turley, S., Iyoda, T., Yamaide, F., Shimoyama, S., Reis, E Sousa, C., Germain, R.N., Mellman, I., and Steinman, R.M., The Formation of Immunogenic Major Histocompatibility Complex Class II-Peptide Ligands in Lysosomal Compartments of Dendritic Cells Is Regulated by Inflammatory Stimuli, J. Exp. Med., 2000, vol. 191, pp. 927–936.PubMedGoogle Scholar
  73. 73.
    Arunachalam, B., Phan, U.T., Geuze, H.J., and Cresswell, P., Enzymatic Reduction of Disulfide Bonds in Lysosomes: Characterization of a Gamma-Interferon-Inducible Lysosomal Thiol Reductase (GILT), Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 745–750.PubMedGoogle Scholar
  74. 74.
    Trombetta, E.S., Ebersold, M., Garrett, W., Pypaert, M., and Mellman, I., Activation of Lysosomal Function during Dendritic Cell Maturation, Science, 2003, vol. 299, pp. 1400–1403.PubMedGoogle Scholar
  75. 75.
    Elsen, S., Doussiere, J., Villiers, C.L., Faure, M., Berthier, R., Papaioannou, A., Grandvaux, N., Marche, P.N., and Vignais, P.V., Cryptic O2-Generating NADPH Oxidase in Dendritic Cells, J. Cell. Sci., 2004, vol. 117, pp. 2215–2226.PubMedGoogle Scholar
  76. 76.
    Savina, A. and Amigorena, S., Phagocytosis and Antigen Presentation in Dendritic Cells, Immunol. Rev., 2007, vol. 219, pp. 143–156.PubMedGoogle Scholar
  77. 77.
    Delamarre, L., Pack, M., Chang, H., Mellman, I., and Trombetta, E.S., Differential Lysosomal Proteolysis in Antigen-Presenting Cells Determines Antigen Fate, Science, 2005, vol. 307, pp. 1630–1634.PubMedGoogle Scholar
  78. 78.
    Lennon-Dumenil, A.M., Bakker, A.H., Maehr, R., Fiebiger, E., Overkleeft, H.S., Rosemblatt, M., Ploegh, H.L., and Lagaudriere-Gesbert, C., Analysis of Protease Activity in Live Antigen-Presenting Cells Shows Regulation of the Phagosomal Proteolytic Contents during Dendritic Cell Activation, J. Exp. Med., 2002, vol. 196, pp. 529–540.PubMedGoogle Scholar
  79. 79.
    El-Sukkari D., Wilson, N.S., Hakansson, K., Steptoe, R.J., Grubb, A., Shortman, K., and Villadangos, J.A., The Protease Inhibitor Cystatin C Is Differentially Expressed among Dendritic Cell Populations, but Does Not Control Antigen Presentation, J. Immunol., 2003, vol. 171, pp. 5003–5011.PubMedGoogle Scholar
  80. 80.
    Pope, M., Gezelter, S., Gallo, N., Hoffman, L., and Steinman, R.M., Low Levels of HIV-1 Infection in Cutaneous Dendritic Cells Promote Extensive Viral Repiication upon Binding to Memory CD4+ T Cells, J. Exp. Med., 1995, vol. 182, pp. 2045–2056.PubMedGoogle Scholar
  81. 81.
    Kovacsovics-Bankowski, M. and Rock, K.L., A Phagosome-to-Cytosol Pathway for Exogenous Antigens Presented on MHC Class I Molecules, Science, 1995, vol. 267, pp. 243–246.PubMedGoogle Scholar
  82. 82.
    Pfeifer, J.D., Wick, M.J., Roberts, R.L., Findlay, K., Normark, S.J., and Harding, C.V., Phagocytic Processing of Bacterial Antigens for Class I MHC Presentation to T Cells, Nature, 1993, vol. 361, pp. 359–362.PubMedGoogle Scholar
  83. 83.
    Fonteneau, J.F., Kavanagh, D.G., Lirvall, M., Sanders, C., Cover, T.L., Bhardwaj, N., and Larsson, M., Characterization of the MHC Class I Cross-Presentation Pathway for Cell-Associated Antigens by Human Dendritic Cells, Blood, 2003, vol. 102, pp. 4448–4455.PubMedGoogle Scholar
  84. 84.
    Ackerman, A.L. and Cresswell, P., Cellular Mechanisms Governing Cross-Presentation of Exogenous Antigens, Nat. Immunol., 2004, vol. 5, pp.678–684.PubMedGoogle Scholar
  85. 85.
    Imai, J., Hasegawa, H., Maruya, M., Koyasu, S., and Yahara, I., Exogenous Antigens Are Processed through the Endoplasmic Reticulum-Associated Degradation (ERAD) in Cross-Presentation by Dendritic Cells, Int. Immunol., 2005, vol. 17, pp. 45–53.PubMedGoogle Scholar
  86. 86.
    Huang, A.Y., Bruce, A.T., Pardoll, D.M., and Levitsky, H.I., In Vivo Cross-Priming of MHC Class I-Restricted Antigens Requires the TAP Transporter, Immunity, 1996, vol. 4, pp. 349–355.PubMedGoogle Scholar
  87. 87.
    Sigal, L.J., Crotty, S., Andino, R., and Rock, K.L., Cytotoxic T-Cell Immunity to Virus-Infected Non-Haematopoietic Cells Requires Presentation of Exogenous Antigen, Nature, 1999, vol. 398, pp. 77–80.PubMedGoogle Scholar
  88. 88.
    Macary, P.A., Lindsay, M., Scott, M.A., Craig, J.I., Luzio, J.P., and Lehner, P.J., Mobilization of MHC Class I Molecules from Late Endosomes to the Cell Surface Following Activation of CD34-Derived Human Langerhans Cells, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 3982–3987.PubMedGoogle Scholar
  89. 89.
    Kleijmeer, M.J., Escola, J.M., Uytdehaag, F.G., Jakobson, E., Griffith, J.M., Osterhaus, A.D., Stoorvogel, W., Melief, C.J., Rabouille, C., and Geuze, H.J., Antigen Loading of MHC Class I Molecules in the Endocytic Tract, Traffic, 2001, vol. 2, pp. 124–137.PubMedGoogle Scholar
  90. 90.
    Castellino, F., Boucher, P.E., Eichelberg, K., Mayhew, M., Rothman, J.E., Houghton, A.N., and Germain, R.N., Receptor-Mediated Uptake of Antigen/Heat Shock Protein Complexes Results in Major Histocompatibility Complex Class I Antigen Presentation via Two Distinct Processing Pathways, J. Exp. Med., 2000, vol. 191, pp. 1957–1964.PubMedGoogle Scholar
  91. 91.
    Gromme, M. and Neefjes, J., Antigen Degradation or Presentation by MHC Class I Molecules via Classical and Non-Classical Pathways, Mol. Immunol., 2002, vol. 39, pp. 181–202.PubMedGoogle Scholar
  92. 92.
    Gromme, M., Uytdehaag, F.G., Janssen, H., Calafat, J., van Binnendijk, R.S., Kenter, M.J., Tulp, A., Verwoerd, D., and Neefjes, J., Recycling MHC Class I Molecules and Endosomal Peptide Loading, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 10326–10331.PubMedGoogle Scholar
  93. 93.
    Porcelli, S.A. and Modlin, R.L., The CD1 System: Antigen-Presenting Molecules for T Cell Recognition of Lipids and Glycolipids, Annu. Rev. Immunol., 1999, vol. 17, pp. 297–329.PubMedGoogle Scholar
  94. 94.
    Matsuda, J.L. and Kronenberg, M., Presentation of Self and Microbial Lipids by CD1 Molecules, Curr. Opin. Immunol., 2001, vol. 13, pp. 19–25.PubMedGoogle Scholar
  95. 95.
    Sugita, M., Grant, E.P., van Donselaar, E., Hsu, V.W., Rogers, R.A., Peters, P.J., and Brenner, M.B., Separate Pathways for Antigen Presentation by CD1 Molecules, Immunity, 1999, vol. 11, pp. 743–752.PubMedGoogle Scholar
  96. 96.
    Sugita, M., van der Wel, N., Rogers, R.A., Peters, P.J., and Brenner, M.B., CD1c Molecules Broadly Survey the Endocytic System, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 8445–8450.PubMedGoogle Scholar
  97. 97.
    Park, S.H., Weiss, A., Benlagha, K., Kyin, T., Teyton, L., and Bendelac, A., The Mouse CD1d-Restricted Repertoire Is Dominated by a Few Autoreactive T Cell Receptor Families, J. Exp. Med., 2001, vol. 193, pp. 893–904.PubMedGoogle Scholar
  98. 98.
    Thery, C., Zitvogel, L., and Amigorena, S., Exosomes: Composition, Biogenesis and Function, Nat. Rev. Immunol., 2002, vol. 2, pp. 569–579.PubMedGoogle Scholar
  99. 99.
    Thery, C., Boussac, M., Veron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J., and Amigorena, S., Proteomic Analysis of Dendritic Cell-Derived Exosomes: A Secreted Subcellular Compartment Distinct from Apoptotic Vesicles, J. Immunol., 2001, vol. 166, pp. 7309–7318.PubMedGoogle Scholar
  100. 100.
    Segura, E., Nicco, C., Lombard, B., Veron, P., Raposo, G., Batteux, F., Amigorena, S., and Thery, C., ICAM-1 on Exosomes from Mature Dendritic Cells Is Critical for Efficient Naive T-Cell Priming, Blood, 2005, vol. 106, pp. 216–223.PubMedGoogle Scholar
  101. 101.
    Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G., and Amigorena, S., Eradication of Established Murine Tumors Using a Novel Cell-Free Vaccine: Dendritic Cell-Derived Exosomes, Nat. Med., 1998, vol. 4, pp. 594–600.PubMedGoogle Scholar
  102. 102.
    Quah, B.J. and O’Neill, H.C., The Immunogenicity of Dendritic Cell Derived Exosomes, Blood Cells Mol. Dis., 2005, vol. 35, pp. 94–110.PubMedGoogle Scholar
  103. 103.
    Kim, S.H., Lechman, E.R., Bianco, N., Menon, R., Keravala, A., Nash, J., Mi, Z., Watkins, S.C., Gambotto, A., and Robbins, P.D., Exosomes Derived from IL-10-Treated Dendritic Cells Can Suppress Inflammation and Collageninduced Arthritis, J. Immunol., 2005, vol. 174, pp. 6440–6448.PubMedGoogle Scholar
  104. 104.
    Hao, S., Bai, O., Li, F., Yuan, J., Laferte, S., and Xiang, J., Mature Dendritic Cells Pulsed with Exosomes Stimulate Efficient Cytotoxic T-Lymphocyte Responses and Antitumour Immunity, Immunology, 2007, vol. 120, pp. 90–102.PubMedGoogle Scholar
  105. 105.
    Segura, E., Guerin, C., Hogg, N., Amigorena, S., and Théry, C., CD8+ Dendritic Cells Use LFA-1 to Capture MHC-Peptide Complexes from Exosomes in Vivo, J. Immunol., 2007, vol. 179, pp. 1489–1496.PubMedGoogle Scholar
  106. 106.
    Colino, J. and Snapper, C.M., Exosomes from Bone-Marrow Dendritic Cells Pulsed with Diphtheria Toxoid Preferentially Induce Type 1 Antigenspecific IgG Responses in Naive Recipients in the Absence of Free Antigen, J. Immunol., 2006, vol. 177, pp. 3757–3762.PubMedGoogle Scholar
  107. 107.
    Colino, J. and Snapper, C.M., Dendritic Cell-Derived Exosomes Express A Streptococcus Pneumoniae Capsular Polysaccharide Type 14 Cross-Reactive Antigen That Induces Protective Immunoglobuiin Responses against Pneumococcal Infection in Mice, Infect. Immun., 2007, vol. 75, pp. 220–230.PubMedGoogle Scholar
  108. 108.
    Carbone, F.R., Belz, G.T., and Heath, W.R., Transfer of Antigen between Migrating and Lymph Node-Resident DCs in Peripheral T-Cell Tolerance and Immunity, Trends Immunol., 2004, vol. 25, pp. 655–658.PubMedGoogle Scholar
  109. 109.
    Bedford, P.A., Burke, F., Stagg, A.J., and Knight, S.C., Dendritic Cells Derived from Bone Marrow Cells Fail to Acquire and Present Major Histocompatibiiity Complex Antigens from Other Dendritic Cells, Immunology, 2008. [Epub Ahead of Print].Google Scholar
  110. 110.
    De Jong, E.C., Smits, H.H., and Kapsenberg, M.L., Dendritic Cell-Mediated T Cell Polarization, Springer Semin. Immunopathol., 2005, vol. 26, pp. 289–307.PubMedGoogle Scholar
  111. 111.
    Pulendran, B., Smith, J.L., Caspary, G., Brasel, K., Pettit, D., Maraskovsky, E., and Maliszewski, C.R., Distinct Dendritic Cell Subsets Differentially Regulate the Class of Immune Response in Vivo, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 1036–1041.PubMedGoogle Scholar
  112. 112.
    Liu, Y.J., Kanzler, H., Soumelis, V., and Gilliet, M., Dendritic Cell Lineage, Plasticity and Cross-Regulation, Nat. Immunol., 2001, vol. 2, pp. 585–589.PubMedGoogle Scholar
  113. 113.
    Schuhbauer, D.M., Mitchison, N.A., and Mueller, B., Interaction within Clusters of Dendritic Cells and Helper T Cells during Initial Th1/Th2 Commitment, Eur. J. Immunol., 2000, vol. 30, pp. 1255–1262.PubMedGoogle Scholar
  114. 114.
    Shuford, W.W., Klussman, K., Tritchler, D.D., Loo, D.T., Chalupny, J., Siadak, A.W., Brown, T.J., Emswiler, J., Raecho, H., Larsen, C.P., Pearson, T.C., Ledbetter, J.A., Aruffo, A., and Mittler, R.S., 4-1BB Costimulatory Signals Preferentially Induce CD8+ T Cell Proliferation and Lead to the Amplification in Vivo of Cytotoxic T Cell Responses, J. Exp. Med., 1997, vol. 186, pp. 47–55.PubMedGoogle Scholar
  115. 115.
    Ruedl, C., Kopf, M., and Bachmann, M.F., CD8+ T Cells Mediate CD40-Independent Maturation of Dendritic Cells in Vivo, J. Exp. Med., 1999, vol. 189, pp. 1875–1884.PubMedGoogle Scholar
  116. 116.
    Lange, C., Durr, M., Doster, H., Melms, A., and Bischof, F., Dendritic Cell-Regulatory T-Cell Interactions Control Self-Directed Immunity, Immunol. Cell. Biol., 2007, vol. 85, pp. 575–581.PubMedGoogle Scholar
  117. 117.
    Anderson, G., Partington, K.M., and Jenkinson, E.J., Differential Effects of Peptide Diversity and Stromal Cell Type in Positive and Negative Selection in the Thymus, J. Immunol., 1998, vol. 161, pp. 6599–6603.PubMedGoogle Scholar
  118. 118.
    Brocker, T., Riedinger, M., and Karjalainen, K., Targeted Expression of Major Histocompatibility Complex (MHC) Class II Molecules Demonstrates That Dendritic Cells Can Induce Negative but Not Positive Selection of Thymocytes in Vivo, J. Exp. Med., 1997, vol. 185, pp. 541–550.PubMedGoogle Scholar
  119. 119.
    Gallegos, A.M. and Bevan, M.J., Central Tolerance to Tissue-Specific Antigens Mediated by Direct and Indirect Antigen Presentation, J. Exp. Med., 2004, vol. 200, pp. 1039–1049.PubMedGoogle Scholar
  120. 120.
    Millet, V., Naquet, P., and Guinamard, R.R., Intercellular MHC Transfer between Thymic Epithelial and Dendritic Cells, Eur. J. Immunol., 2008, vol. 38, pp. 1257–1263.PubMedGoogle Scholar
  121. 121.
    Yasutomo, K., Lucas, B., and Germain, R.N., TCR Signaling for Initiation and Completion of Thymocyte Positive Selection Has Distinct Requirements for Ligand Quality and Presenting Cell Type, J. Immunol., 2000, vol. 165, pp. 3015–3022.PubMedGoogle Scholar
  122. 122.
    Cannarile, M.A., Decanis, N., van Meerwijk, J.P., and Brocker, T., The Role of Dendritic Cells in Selection of Classical and Nonclassical CD8+ T Cells in Vivo, J. Immunol., 2004, vol. 173, pp. 4799–4805.PubMedGoogle Scholar
  123. 123.
    Goldschneider, I. and Cone, R.E., A Central Role for Peripheral Dendritic Cells in the Induction of Acquired Thymic Tolerance, Trends. Immunol., 2003, vol. 24, pp. 77–81.PubMedGoogle Scholar
  124. 124.
    Watanabe, N., Wang, Y.H., Lee, H.K., Ito, T., Wang, Y.H., Cao, W., and Liu, Y.J., Hassall’s Corpuscles Instruct Dendritic Cells to Induce CD4+Cd25+ Regulatory T Cells in Human Thymus, Nature, 2005, vol. 436, pp. 1181–1185.PubMedGoogle Scholar
  125. 125.
    Bouneaud, C., Kourilsky, P., and Bousso, P., Impact of Negative Selection on the T Cell Repertoire Reactive to a Self-Peptide: A Large Fraction of T Cell Clones Escapes Clonal Detection, Immunity, 2000, vol. 13, pp. 829–840.PubMedGoogle Scholar
  126. 126.
    Schwartz, R.H., T Cell Anergy, Annu. Rev. Immunol., 2003, vol. 21, pp. 305–334.PubMedGoogle Scholar
  127. 127.
    Perona-Wright, G., Anderton, S.M., Howie, S.E., and Gray, D., IL-10 Permits Transient Activation of Dendritic Cells to Tolerize T Cells and Protect from Central Nervous System Autoimmune Disease, Int. Immunol., 2007, vol. 19, pp. 1123–1134.PubMedGoogle Scholar
  128. 128.
    McBride, J.M., Jung, T., De Vries, J.E., and Aversa, G., IL-10 Alters DC Function via Modulation of Cell Surface Molecules Resulting in Impaired T-Cell Responses, Cell. Immunol., 2002, vol. 215, pp. 162–172.PubMedGoogle Scholar
  129. 129.
    Munn, D.H., Sharma, M.D., Lee, J.R., Jhaver, K.G., Johnson, T.S., Keskin, D.B., Marshall, B., Chandler, P., Antonia, S.J., Burgess, R., Slingluff, C.L., Jr., and Mellor, A.L., Potential Regulatory Function of Human Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase, Science, 2002, vol. 297, pp. 1867–1870.PubMedGoogle Scholar
  130. 130.
    Terness, P., Bauer, T.M., Rose, L., Dufter, C., Watzlik, A., Simon, H., and Opelz, G., Inhibition of Allogeneic T Cell Proliferation by Indoleamine 2,3-Dioxygenase-Expressing Dendritic Cells: Mediation of Suppression by Tryptophan Metabolites, J. Exp. Med., 2002, vol. 196, pp. 447–457.PubMedGoogle Scholar
  131. 131.
    Dong, H., Zhu, G., Tamada, K., and Chen, L., B7-H1, a Third Member of the B7 Family, Co-Stimulates T-Cell Proliferation and Interleukin-10 Secretion, Nat. Med., 1999, vol. 5, pp. 1365–1369.PubMedGoogle Scholar
  132. 132.
    Freeman, G.J., Long, A.J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L.J., Malenkovich, N., Okazaki, T., Byrne, M.C., Horton, H.F., Fouser, L., Carter, L., Iing, V., Bowman, M.R., Carreno, B.M., Coliins, M., Wood, C.R., and Honjo, T., Engagement of the PD-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation, J. Exp. Med., 2000, vol. 192, pp. 1027–1034.PubMedGoogle Scholar
  133. 133.
    Radhakrishnan, S., Celis, E., and Pease, L.R., B7-DC Cross-Linking Restores Antigen Uptake and Augments Antigen-Presenting Cell Function by Matured Dendritic Cells, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 11438–11443.PubMedGoogle Scholar
  134. 134.
    Amend, B., Doster, H., Lange, C., Dubois, E., Kalbacher, H., Melms, A., and Bischof, F., Induction of Autoimmunity by Expansion of Autoreactive CD4+CD62Llow Cells in Vivo, J. Immunol., 2006, vol. 177, pp. 4384–4390.PubMedGoogle Scholar
  135. 135.
    Tseng, S.Y., Otsuji, M., Gorski, K., Huang, X., Slansky, J.E., Pai, S.I., Shalabi, A., Shin, T., Pardoll, D.M., and Tsuchiya, H., B7-DC, a New Dendritic Cell Molecule with Potent Costimulatory Properties for T Cells, J. Exp. Med., 2001, vol. 193, pp. 839–846.PubMedGoogle Scholar
  136. 136.
    Askenasy, N., Kaminitz, A., and Yarkoni, S., Mechanisms of T Regulatory Cell Function, Autoimmun. Rev., 2008, vol. 7, pp. 370–375.PubMedGoogle Scholar
  137. 137.
    Yamazaki, S., Bonito, A.J., Spisek, R., Dhodapkar, M., Inaba, K., and Steinman, R.M., Dendritic Cells Are Specialized Accessory Cells Along with TGF-for the Differentiation of Foxp3+ CD4+ Regulatory T Cells from Peripheral Foxp3 Precursors, Blood, 2007, vol. 110, pp. 4293–4302.PubMedGoogle Scholar
  138. 138.
    Tarbell, K.V., Yamazaki, S., Olson, K., Toy, P., and Steinman, R.M., CD25+ CD4+ T Cells, Expanded with Dendritic Cells Presenting a Single Autoantigenic Peptide, Suppress Autoimmune Diabetes, J. Exp. Med., 2004, vol. 199, pp. 1467–1477.PubMedGoogle Scholar
  139. 139.
    Walker, L.S., Chodos, A., Eggena, M., Dooms, H., and Abbas, A.K., Antigen-Dependent Proliferation of CD4+ CD25+ Regulatory T Cells in Vivo, J. Exp. Med., 2003, vol. 198, pp. 249–258.PubMedGoogle Scholar
  140. 140.
    Lin, C.H. and Hunig, T., Efficient Expansion of Regulatory T Cells in Vitro and in Vivo with a CD28 Superagonist, Eur. J. Immunol., 2003, vol. 33, pp. 626–638.PubMedGoogle Scholar
  141. 141.
    Fallarino, F., Bianchi, R., Orabona, C., Vacca, C., Belladonna, M.L., Fioretti, M.C., Serreze, D.V., Grohmann, U., and Puccetti, P., CTLA-4-Ig Activates Forkhead Transcription Factors and Protects Dendritic Cells from Oxidative Stress in Nonobese Diabetic Mice, J. Exp. Med., 2004, vol. 200, pp. 1051–1062.PubMedGoogle Scholar
  142. 142.
    Rutella, S., Danese, S., and Leone, G., Tolerogenic Dendritic Cells: Cytokine Modulation Comes of Age, Blood, 2006, vol. 108, pp. 1435–1440.PubMedGoogle Scholar
  143. 143.
    Svensson, M., Maroof, A., Ato, M., and Kaye, P.M., Stromal Cells Direct Local Differentiation of Regulatory Dendritic Cells, Immunity, 2004, vol. 21, pp. 805–816.PubMedGoogle Scholar
  144. 144.
    Tang, H., Guo, Z., Zhang, M., Wang, J., Chen, G., and Cao, X., Endothelial Stroma Programs Hematopoietic Stem Cells to Differentiate into Regulatory Dendritic Cells through IL-10, Blood, 2006, vol. 108, pp. 1189–1197.PubMedGoogle Scholar
  145. 145.
    Zhang, M., Tang, H., Guo, Z., An, H., Zhu, X., Song, W., Guo, J., Huang, X., Chen, T., Wang, J., and Cao, X., Splenic Stroma Drives Mature Dendritic Cells to Differentiate ito Regulatory Dendritic Cells, Nat. Immunol., 2004, vol. 5, pp. 1124–1133.PubMedGoogle Scholar
  146. 146.
    Bjorck, P., Flores-Romo, L., and Liu, Y.J., Human Interdigitating Dendritic Cells Directly Stimulate CD40-Activated Naive B Cells, Eur. J. Immunol., 1997, vol. 27, pp. 1266–1274.PubMedGoogle Scholar
  147. 147.
    Dubois, B., Bridon, J.M., Fayette, J., Barthelemy, C., Banchereau, J., Caux, C., and Briere, F., Dendritic Cells Directly Modulate B Cell Growth and Differentiation, J. Leukoc. Biol., 1999, vol. 66, pp. 224–230.PubMedGoogle Scholar
  148. 148.
    Dubois, B., Massacrier, C., Vanberviiet, B., Fayette, J., Briere, F., Banchereau, J., and Caux, C., Critical Role of IL-12 in Dendritic Cell-Induced Differentiation of Naive B Lymphocytes, J. Immunol., 1998, vol. 161, pp. 2223–2231.PubMedGoogle Scholar
  149. 149.
    Johansson, B., Ingvarsson, S., Bjorck, P., and Borrebaeck, C.A., Human Interdigitating Dendritic Cells Induce Isotype Switching and IL-13-Dependent IgM Production in CD40-Activated Naive B Cells, J. Immunol., 2000, vol. 164, pp. 1847–1854.PubMedGoogle Scholar
  150. 150.
    Obayashi, K., Doi, T., and Koyasu, S., Dendritic Cells Suppress IgE Production in B Cells, Int. Immunol., 2007, vol. 19, pp. 217–226.PubMedGoogle Scholar
  151. 151.
    Wykes, M., Pombo, A., Jenkins, C., and MacPherson, G.G., Dendritic Cells Interact Directly with Naive B Lymphocytes to Transfer Antigen and Initiate Class Switching in a Primary T Dependent Response, J. Immunol., 1998, vol. 161, pp. 1313–1319.PubMedGoogle Scholar
  152. 152.
    Colino, J., Shen, Y., and Snapper, C.M., Dendritic Cells Pulsed with Intact Streptococcus pneumoniae Elicit Both Protein- and Polysaccharide-Specific Immunoglobuiin Isotype Responses in Vivo through Distinct Mechanisms, J. Exp. Med., 2002, vol. 195, pp. 1–13.PubMedGoogle Scholar
  153. 153.
    Balazs, M., Martin, F., Zhou, T., and Kearney, J., Blood Dendritic Cells Interact with Splenic Marginal Zone B Cells to Initiate T-Independent Immune Responses, Immunity, 2002, vol. 17, pp. 341–352.PubMedGoogle Scholar
  154. 154.
    Bergtold, A., Desai, D.D., Gavhane, A., and Clynes, R., Cell Surface Recycling of Internalized Antigen Permits Dendritic Cell Priming of B Cells, Immunity, 2005, vol. 23, pp. 503–514.PubMedGoogle Scholar
  155. 155.
    Mocikat, R., Braumuller, H., Gumy, A., Egeter, O., Ziegler, H., Reusch, U., Bubeck, A., Louis, J., Mailhammer, R., Riethmuller, G., Koszinowski, U., and Röcken, M., Natural Killer Cells Activated by MHC Class I Low Targets Prime Dendritic Cells to Induce Protective CD8 T Cell Responses, Immunity, 2003, vol. 19, pp. 561–569.PubMedGoogle Scholar
  156. 156.
    Martin-Fontecha, A., Thomsen, L.L., Brett, S., Gerard, C., Lipp, M., Lanzavecchia, A., and Sallusto, F., Induced Recruitment of NK Cells to Lymph Nodes Provides IFN-Gamma for T(H)1 Priming, Nat. Immunol., 2004, vol. 5, pp. 1260–1265.PubMedGoogle Scholar
  157. 157.
    Fernandez, N.C., Lozier, A., Flament, C., Ricciardi-Castagnoli, P., Bellet, D., Suter, M., Perricaudet, M., Tursz, T., Maraskovsky, E., and Zitvogel, L., Dendritic Cells Directly Trigger NK Cell Functions: Cross-Talk Relevant in Innate Anti-Tumor Immune Responses in Vivo, Nat. Med., 1999, vol. 5, pp. 405–411.PubMedGoogle Scholar
  158. 158.
    Münz, C., Dao, T., Ferlazzo, G., De Cos, M.A., Goodman, K., and Young, J.W., Mature Myeloid Dendritic Cell Subsets Have Distinct Roles for Activation and Viability of Circulating Human Natural Killer Cells, Blood, 2005, vol. 105, pp. 266–273.PubMedGoogle Scholar
  159. 159.
    Gerosa, F., Gobbi, A., Zorzi, P., Burg, S., Briere, F., Carra, G., and Trinchieri, G., The Reciprocal Interaction of NK Cells with Plasmacytoid or Myeloid Dendritic Cells Profoundly Affects Innate Resistance Functions, J. Immunol., 2005, vol. 174, pp. 727–734.PubMedGoogle Scholar
  160. 160.
    Fujii, S., Shimizu, K., Hemmi, H., and Steinman, R.M., Innate Valpha14+ Natural Killer T Cells Mature Dendritic Cells, Leading to Strong Adaptive Immunity, Immunol. Rev., 2007, vol. 220, pp. 183–198.PubMedGoogle Scholar
  161. 161.
    Fujii, S., Liu, K., Smith, C., Bonito, A.J., and Steinman, R.M., The Linkage of Innate to Adaptive Immunity via Maturing Dendritic Cells in Vivo Requires CD40 Ligation in Addition to Antigen Presentation and CD80/86 Costimulation, J. Exp. Med., 2004, vol. 199, pp. 1607–1618.PubMedGoogle Scholar
  162. 162.
    Hermans, I.F., Silk, J.D., Gileadi, U., Salio, M., Mathew, B., Ritter, G., Schmidt, R., Harris, A.L., Old, L., and Cerundolo, V., NKT Cells Enhance CD4+ and CD8+ T Cell Responses to Soluble Antigen in Vivo Through Direct Interaction with Dendritic Cells, J. Immunol., 2003, vol. 171, pp. 5140–5147.PubMedGoogle Scholar
  163. 163.
    Conti, L., Casetti, R., Cardone, M., Varano, B., Martino, A., Belardelli, F., Poccia, F., and Gessani, S., Reciprocal Activating Interaction between Dendritic Cells and Pamidronate-Stimulated Gamma/Delta T Cells: Role of CD86 and Inflammatory Cytokines, J. Immunol., 2005, vol. 174, pp. 252–260.PubMedGoogle Scholar
  164. 164.
    Leslie, D.S., Vincent, M.S., Spada, F.M., Das, H., Sugita, M., Morita, C.T., and Brenner, M.B., CD1-Mediated Gamma/Delta T Cell Maturation of Dendritic Cells, J. Exp. Med., 2002, vol. 196, pp. 1575–1584.PubMedGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Mechnikov Research Institute for Vaccines and SeraRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations