Cell and Tissue Biology

, Volume 12, Issue 2, pp 102–111 | Cite as

Alpha-Tocopheryl Succinate Selectively Affects the Morphology and Motility of Normal and Tumor Epithelial Cells

Article
  • 1 Downloads

Abstract

Alpha-tocopheryl succinate (α-TS) is a vitamin-E derivative with potential antitumor properties. In this study, we have investigated the effect of α-TS on the morphology and motility of the A431 human epidermoid carcinoma cell line and HaCaT immortalized nontumorigenic human keratinocytes. Phase contrast and fluorescent microscopy, in vitro wound healing assay (scratch test), and scanning electron microscopy have been used. In both cell lines, alteration of cell shape, actin-cytoskeleton reorganization, cell-surface smoothing, disappearance of microvillae, and cell-motility inhibition have been shown. These effects are similar in both cell lines, but in the HaCaT cell line they occur after treatment with higher α-TS doses than for A431cells. Thus, we have demonstrated the selectivity of the effect of α-TS on tumor cells derived from human-skin stratified epithelia. The results of this work may be useful for further investigations focused on development of antitumor agents with selective action toward tumor cells.

Keywords

alpha-tocopheryl succinate actin filaments cytoskeleton scratch test cell motility 

Abbreviation

VES

vitamin E succinate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrova, A.Y., Kopnin, P.B., Vasiliev, J.M., and Kopnin, B.P., ROS up-regulation mediates Ras-induced changes of cell morphology and motility, Exp. Cell Res., 2006, vol. 312, pp. 2066–2073.CrossRefPubMedGoogle Scholar
  2. Alleva, R., Benassi, M.S., Tomasetti, M., Gellert, N., Ponticelli, F., Borghi, B., Picci, P., and Neuzil, J., Alphatocopheryl succinate induces cytostasis and apoptosis in osteosarcoma cells: the role of E2F1, Biochem. Biophys. Res. Commun., 2005, vol. 331, pp. 1515–1521.CrossRefPubMedGoogle Scholar
  3. Dong, L.F., Swettenham, E., Eliasson, J., Wang, X.F., Gold, M., Medunic, Y., Stantic, M., Low, P., Prochazka, L., Witting, P.K., Turanek, J., Akporiaye, E.T., Ralph, S.J., and Neuzil, J., Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress, Cancer Res., 2007, vol. 67, pp. 11906–11913.CrossRefPubMedGoogle Scholar
  4. Douma, S., Van Laar, T., Zevenhoven, J., Meuwissen, R., Van Garderen, E., and Peeper, D.S., Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB, Nature, 2004, vol. 430, pp. 1034–1039.CrossRefPubMedGoogle Scholar
  5. Entschladen, F., Drell, IV, T., Lang, K., Joseph, J., and Zaenker, K., Tumour-cell migration, invasion, and metastasis: navigation by neurotransmitters, Lancet Oncol., 2004, vol. 5, pp. 254–258.CrossRefPubMedGoogle Scholar
  6. Giese, A., Bjerkvig, R., Berens, M.E., and Westphal, M., Cost of migration: invasion of malignant gliomas and implications for treatment, J. Clin. Oncol., 2003, vol. 21, pp. 1624–1636.CrossRefPubMedGoogle Scholar
  7. Gogvadze, V., Norberg, E., Orrenius, S., and Zhivotovsky, B., Involvement of Ca2+ and ROS in alphatocopheryl succinate-induced mitochondrial permeabilization, Int. J. Cancer, 2010, vol. 127, pp. 1823–1832.CrossRefPubMedGoogle Scholar
  8. Goldkorn, T. and Ding, T., The rise and fall of ceramide and 1,2-diacylglycerol (DAG): modulation by transforming growth factor-beta 1 (TGF beta 1) and by epidermal growth factor (EGF), Adv. Exp. Med. Biol., 1997, vol. 400A, pp. 461–472.CrossRefPubMedGoogle Scholar
  9. Goldkorn, T. and Mendelsohn, J., Transforming growth factor beta modulates phosphorylation of the epidermal growth factor receptor and proliferation of A431 cells, Cell Growth Differ., 1992, vol. 3, pp. 101–109.PubMedGoogle Scholar
  10. Gu, X., Song, X., Dong, Y., Cai, H., Walters, E., Zhang, R., Pang, X., Xie, T., Guo, Y., Sridhar, R., and Califano, J.A., Vitamin E succinate induces ceramide-mediated apoptosis in head and neck squamous cell carcinoma in vitro and in vivo, Clin. Cancer Res., 2008, vol. 14, pp. 1840–1848.CrossRefPubMedGoogle Scholar
  11. Haga, A., Funasaka, T., Niinaka, Y., Raz, A., and Nagase, H., Autocrine motility factor signaling induces tumor apoptotic resistance by regulations Apaf-1 and Caspase-9 apoptosome expression, Int. J. Cancer, 2003, vol. 107, pp. 707–714.CrossRefPubMedGoogle Scholar
  12. Han, Y., Jiang, Q., Gao, H., Fan, J., Wang, Z., Zhong, F., Zheng, Y., Gong, Z., and Wang, C., The anti-apoptotic effect of polypeptide from Chlamys farreri (PCF) in UVBexposed HaCaT cells involves inhibition of iNOS and TGF-β1, Cell Biochem. Biophys., 2015, vol. 71, pp. 1105–1115.CrossRefPubMedGoogle Scholar
  13. Hu, W., Xu, R., Zhang, G., Jin, J., Szulc, Z.M., Bielawski, J., Hannun, Y.A., Obeid, L.M., and Mao, C., Golgi fragmentation is associated with ceramide-induced cellular effects, Mol. Biol. Cell., 2005, vol. 16, pp. 1555–1567.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kanai, K., Kikuchi, E., Mikami, S., Suzuki, E., Uchida, Y., Kodaira, K., Miyajima, A., Ohigashi, T., Nakashima, J., and Oya, M., Vitamin E succinate induced apoptosis and enhanced chemosensitivity to paclitaxel in human bladder cancer cells in vitro and in vivo, Cancer Sci., 2010, vol. 101, pp. 216–223.CrossRefPubMedGoogle Scholar
  15. Kaneyuki, U., Ueda, S., Yamagishi, S., Kato, S., Fujimura, T., Shibata, R., Hayashida, A., Yoshimura, J., Kojiro, M., Oshima, K., and Okuda, S., Pitavastatin inhibits lysophosphatidic acid-induced proliferation and monocyte chemoattractant protein-1 expression in aortic smooth muscle cells by suppressing Rac-1-mediated reactive oxygen species generation, Vascul. Pharmacol., 2007, vol. 46, pp. 286–292.CrossRefPubMedGoogle Scholar
  16. Kim, H., Hwang, J.S., Woo, C.H., Kim, E.Y., Kim, T.H., Cho, K.J., Kim, J.H., Seo, J.M., and Lee, S.S., TNFalpha-induced up-regulation of intercellular adhesion molecule-1 is regulated by a Rac-ROS-dependent cascade in human airway epithelial cells, Exp. Mol. Med., 2008, vol. 40, pp. 167–175.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kline, K., Yu, W., and Sanders, B.G., Vitamin E: mechanisms of action as tumor cell growth inhibitors, J. Nutr., 2001, vol. 131, pp. 161S–163S.Google Scholar
  18. Kruspig, B., Zhivotovsky, B., and Gogvadze, V., Contrasting effects of A-tocopheryl succinate on cisplatin-and etoposide-induced apoptosis, Mitochondrion, 2013, vol. 13, pp. 533–538.CrossRefPubMedGoogle Scholar
  19. Kurokawa, K., Itoh, R.E., Yoshizaki, H., Nakamura, Y.O., and Matsuda, M., Coactivation of Rac1 and Cdc42 at lamellipodia and membrane ruffles induced by epidermal growth factor, Mol. Biol. Cell., 2004, vol. 15, pp. 1003–1010.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lefranc, F., Brotchi, J., and Kiss, R., Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis, J. Clin. Oncol., 2005, vol. 23, pp. 2411–2422.CrossRefPubMedGoogle Scholar
  21. Neuzil, J., Svensson, I., Weber, T., Weber, C., and Brunk, U.T., Alpha-tocopheryl succinate-induced apoptosis in Jurkat T cells involves caspase-3 activation, and both lysosomal and mitochondrial destabilisation, FEBS Lett., 1999, vol. 445, pp. 295–300.CrossRefPubMedGoogle Scholar
  22. Neuzil, J., Swettenham, E., Wang, X.F., Dong, L.F., and Stapelberg, M., alpha Tocopheryl succinate inhibits angiogenesis by disrupting paracrine FGF2 signalling, FEBS Lett., 2007a, vol. 581, pp. 4611–4615.CrossRefPubMedGoogle Scholar
  23. Neuzil, J., Tomasetti, M., Zhao, Y., Dong, L.F., Birringer, M., Wang, X.F., Low, P., Wu, K., Salvatore, B.A., and Ralph, S.J., Vitamin E analogs, a novel group of “mitocans”, as anticancer agents: the importance of being redox-silent, Mol. Pharmacol., 2007b, vol. 71, pp. 1185–1199.CrossRefPubMedGoogle Scholar
  24. Ni, J., Chen, M., Zhang, Y., Li, R., Huang, J., and Yeh, S., Vitamin E succinate inhibits human prostate cancer cell growth via modulating cell cycle regulatory machinery, Biochem. Biophys. Res. Commun., 2003, vol. 300, pp. 357–363.CrossRefPubMedGoogle Scholar
  25. Pinilla, I., Piazuelo, E., Jiménez, P., Polo, V., Larrosa, J.M., Abecia, E., and Honrubia, F.M., Inhibitory effect of alpha tocopherol succinate on fibroblast wound healing, Arch. Soc. Esp. Oftalmol., 2000, vol. 75, pp. 383–388.PubMedGoogle Scholar
  26. Prasad, K.N. and Edwards-Prasad, J., Effects of tocopherol (vitamin E) acid succinate on morphological alterations and growth inhibition in melanoma cells in culture, Cancer Res., 1982, vol. 42, pp. 550–555.PubMedGoogle Scholar
  27. Prasad, K.N. and Edwards-Prasad, J., Vitamin E and cancer prevention: recent advances and future potentials, J. Am. Coll. Nutr., 1992, vol. 11, pp. 487–500.CrossRefPubMedGoogle Scholar
  28. Prochazka, L., Dong, L.F., Valis, K., Freeman, R., Ralph, S.J., Turanek, J., and Neuzil, J., Alpha-tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels, Apoptosis, 2010, vol. 15, pp. 782–794.CrossRefPubMedGoogle Scholar
  29. Qadir, M.I., Parveen, A., and Ali, M., Cdc42: role in cancer management, Chem. Biol. Drug Des., 2015, vol. 86, pp. 432–439.CrossRefPubMedGoogle Scholar
  30. Rohlena, J., Dong, L.F., Kluckova, K., Zobalova, R., Goodwin, J., Tilly, D., Stursa, J., Pecinova, A., Philimonenko, A., Hozak, P., Banerjee, J., Ledvina, M., Sen, C.K., Houstek, J., Coster, M.J., and Neuzil, J., Mitochondrially targeted A-tocopheryl succinate is antiangiogenic: potential benefit against tumor angiogenesis but caution against wound healing, Antioxid. Redox Signal., 2011, vol. 15, pp. 2923–2935.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Savitskaya, M.A., Vildanova, M.S., Kisurina-Evgenieva, O.P., Smirnova, E.A., and Onischenko, G.E., Mitochondrial pathway of α-tocopheryl succinate-induced apoptosis in human epidermoid carcinoma A431 cells, Acta Naturae, 2012, vol. 4, pp. 88–94.Google Scholar
  32. Scanlon, C.S., Van Tubergen, E.A., Inglehart, R.C., and D’Silva, N.J., Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma, J. Dent. Res., 2013, vol. 92, pp. 14–21.CrossRefGoogle Scholar
  33. Shiau, C.W., Huang, J.W., Wang, D.S., Weng, J.R., Yang, C.C., Lin, C.H., Li, C., and Chen, C.S., α-Tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function, J. Biol. Chem., 2006, vol. 281, pp. 11819–11825.CrossRefPubMedGoogle Scholar
  34. Singh, V.K., Brown, S.D., and Kao, T.-C., Alpha-tocopherol succinate protects mice from gamma-radiation by induction of granulocyte-colony stimulating factor, Int. J. Rad. Biol., 2010, vol. 86, pp. 12–21.CrossRefPubMedGoogle Scholar
  35. Singh, P.K., Wise, S.Y., Ducey, E.J., Fatanmi, O.O., Elliott, T.B., and Singh, V.K., α-Tocopherol succinate protects mice against radiation-induced gastrointestinal injury, Radiat. Res., 2012, vol. 177, pp. 133–145.CrossRefPubMedGoogle Scholar
  36. Sporn, M.B., The war on cancer, Lancet, 1996, vol. 347, pp. 1377–1381.CrossRefPubMedGoogle Scholar
  37. Tomasetti, M., Strafella, E., Staffolani, S., Santarelli, L., Neuzil, J., and Guerrieri, R., Alpha-tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate, Br. J. Cancer, 2010, vol. 102, pp. 1224–1234.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Turley, J.M, Sanders, B.G, and Kline, K., RRR-alphatocopheryl succinate modulation of human promyelocytic leukemia (HL-60) cell proliferation and differentiation, Nutr. Cancer, 1992, vol. 18, pp. 201–213.CrossRefPubMedGoogle Scholar
  39. Wang, D., Chuang, H.C., Weng, S.C., Huang, P.H., Hsieh, H.Y., Kulp, S.K., and Chen, C.S., Alpha-tocopheryl succinate as a scaffold to develop potent inhibitors of breast cancer cell adhesion, J. Med. Chem., 2009, vol. 52, pp. 5642–5648.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yamamoto, S., Tamai, H., Ishisaka, R., Kanno, T., Arita, K., Kobuchi, H., and Utsumi, K., Mechanism of alpha-tocopheryl succinate-induced apoptosis of promyelocytic leukemia cells, Free Radic., 2000, vol. 33, pp. 407–418.CrossRefGoogle Scholar
  41. Yarrow, J.C., Perlman, Z.E., Westwood, N.J., and Mitchison, T.J., A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods, BMC Biotechnol., 2004, vol. 4, p.21.CrossRefPubMedPubMedCentralGoogle Scholar
  42. You, H., Yu, W., Sanders, B.G, and Kline, K., RRR-alphatocopheryl succinate induces MDA-MB-435 and MCF-7 human breast cancer cells to undergo differentiation, Cell Growth Differ., 2001, vol. 12, pp. 471–480.PubMedGoogle Scholar
  43. You, H., Yu, W., Munoz-Medellin, D., Brown, P.H., Sanders, B.G., and Kline, K., Role of extracellular signal-regulated kinase pathway in RRR-alpha-tocopheryl succinateinduced differentiation of human MDA-MB-435 breast cancer cells, Mol. Carcinog., 2002, vol. 33, pp. 228–236.CrossRefPubMedGoogle Scholar
  44. Yu, W., Heim, K., Qian, M., Simmons-Menchaca, M., Sanders, B.G., and Kline, K., Evidence for role of transforming growth factor-beta in RRR-alpha-tocopheryl succinate-induced apoptosis of human MDA-MB-435 breast cancer cells, Nutr. Cancer, 1997, vol. 27, pp. 267–278.CrossRefPubMedGoogle Scholar
  45. Yu, W., Sanders, B.G, and Kline, K., RRR-alpha-tocopheryl succinate induction of DNA synthesis arrest of human MDA-MB-435 cells involves TGF-beta-independent activation of P21Waf1/Cip1, Nutr. Cancer, 2002, vol. 43, pp. 227–236.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Biological FacultyMoscow State UniversityMoscowRussia

Personalised recommendations