Advertisement

Cell and Tissue Biology

, Volume 12, Issue 2, pp 153–159 | Cite as

Expression of Recombinant LDLR–EGFP Fusion Protein in HEK-293 Cells as a Promising Tool to Assess the Effect of LDLR Gene Mutations

  • D. S. Polyakov
  • N. A. Grudinina
  • T. Yu. Bogoslovskaya
  • A. V. Sokolov
  • M. Yu. Mandelshtam
  • V. B. Vasilyev
Article
  • 12 Downloads

Abstract

Mutations in the low density lipoprotein receptor gene (LDLR) frequently impair folding and intracellular traffic of the receptor protein, resulting in the development of a monogenic disorder, familial hypercholesterolemia (FH). Identification of novel LDLR mutations requires confirmation of their functional importance in distinguishing pathogenic mutations from neutral changes in the aminoacid sequence. To elaborate a system for evaluation of the effect of mutation on the folding and intracellular transport of the LDLR, as well as its ability to bind low density lipoprotein (LDL), we constructed a plasmid containing LDLR cDNA and the gene of enhanced green fluorescent protein (EGFP). Confocal microscopy has shown that, upon transient transfection of HEK293 cells with the plasmid, the recombinant fusion protein LDLR–EGFP is transported onto the cellular membrane and binds labeled LDL. This construct will be further modified by site-directed mutagenesis to reproduce the LDLR missense mutations most common in the population of northwest Russia so as to study the subcellular localization and function of the modified chimeric protein.

Keywords

gene expression green fluorescent protein familial hypercholesterolemia fusion protein gene expression low density lipoprotein receptor 

Abbreviation

FH

familial hypercholesterolemia

EGFP

enhanced green fluorescent protein

LDL

low density lipoprotein

LDLR

LDL receptor

PBS

phosphate buffer solution

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, N.L., Nance, S.L., Pearson, T.W., and Anderson, N.G., Specific antiserum staining of two-dimensional electrophoretic patterns of human plasma proteins immobilized on nitrocellulose, Electrophoresis, 1982, vol. 3, pp. 135–142.CrossRefGoogle Scholar
  2. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  3. Chen, C. and Okayama, H., High-efficiency transformation of mammalian cells by plasmid DNA, Mol. Cell. Biol., 1987, vol. 7, pp. 2745–2752.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Etxebarria, A., Benito-Vicente, A., Alves, A.C., Ostolaza, H., Bourbon, M., and Martin, C., Advantages and versatility of fluorescence-based methodology to characterize the functionality of LDLR and class mutation assignment, PLoS One, 2014, vol. 9, p. e112677.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Etxebarria, A., Benito-Vicente, A., Palacios, L., Stef, M., Cenarro, A., Civeira, F., Ostolaza, H., and Martin, C., Functional characterization and classification of frequent low density lipoprotein receptor variants, Hum. Mutat., 2015, vol. 36, pp. 129–141.CrossRefPubMedGoogle Scholar
  6. Fling, S.P. and Gregerson, D.S., Peptide and protein molecular weigh determination by electrophoresis using a high-molarity tris buffer system without urea, Anal. Biochem., 1986, vol. 155, pp. 83–88.CrossRefPubMedGoogle Scholar
  7. Goldstein, J.L., Hobbs, H.H., and Brown, M.S., Familial hypercholesterolaemia, in The Metabolic and Molecular Basis of Inherited Disease, New York: McGraw Hill, 2001, vol. 3, pp. 2863–2914.Google Scholar
  8. Hobbs, H.H., Russell, D.W., Brown, M.S., and Goldstein, J.L., The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein, Annu. Rev. Genet., 1990, vol. 24, pp. 133–170.CrossRefPubMedGoogle Scholar
  9. Komarova, T.Yu., Golovina, A.S., Grudinina, N.A., Zakharova, F.M., Korneva, V.A., Lipovetsky, B.M., Serebrenitskaya, M.P., Konstantinov, V.O., Vasilyev, V.B., and Mandelshtam, M.Yu., New mutations in low density lipoprotein receptor gene in familial hypercholesterolemia patients from Petrozavodsk, Russ. J. Genet., 2013, vol. 49, no. 6, pp. 673–676.CrossRefGoogle Scholar
  10. Korneva, V.A., Kuznetsova, T.Yu., Bogoslovskaya, T.Yu., Polyakov, D.S., Vasilyev, V.B., Orlov, A.V., and Mandelshtam, M.Yu., Cholesterol levels in genetically determined familial hypercholesterolaemia in Russian Karelia, Cholesterol, Article ID 9375818. doi.org/10.1155/2017/9375818Google Scholar
  11. Meshkov, A.N., Stambolsky, D.V., Krapivner, S.R., Bochkov, V.N., Kukharchuk, V.V., and Malyshev, P.P., Lowdensity lipoprotein receptor gene mutations in patients with clinical diagnosis of familial hypercholesterolemia, Kardiologiia, 2004, vol. 44, pp. 58–61.PubMedGoogle Scholar
  12. Polyakov, D.S., Sakhabeyev, R.G., and Shavlovsky, M.M., Partial denaturation of recombinant protein for affinity purification, Appl. Biochem. Microbiol., 2016, vol. 52, pp. 105–109.CrossRefGoogle Scholar
  13. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J., Primary structure of the Aequorea victoria green-fluorescent protein, Gene, 1992, vol. 111, pp. 229–233.CrossRefPubMedGoogle Scholar
  14. Silva, S., Alves, A.C., Patel, D., Malhó, R., Soutar, A.K., and Bourbon, M., In vitro functional characterization of missense mutations in the LDLR gene, Atherosclerosis, 2012, vol. 225, pp. 128–134.CrossRefPubMedGoogle Scholar
  15. Sokolov, A.V., Chekanov, A.V., Kostevich, V.A., Aksenov, D.V., Vasilyev, V.B., and Panasenko, O.M., Revealing binding sites for myeloperoxidase on the surface of human low density lipoproteins, Chem. Phys. Lipids, 2011, vol. 164, pp. 49–53.CrossRefPubMedGoogle Scholar
  16. Solovyov, K.V., Polyakov, D.S., Grudinina, N.A., Egorov, V.V., Morozova, I.V., Aleynikova, T.D., and Shavlovsky, M.M., Expression in E. coli and purification of the fibrillogenic fusion proteins TTR-sfGFP and β2M-sfGFP, Prep. Biochem. Biotechnol., 2011, vol. 41, pp. 337–349.CrossRefPubMedGoogle Scholar
  17. Soutar, A.K. and Naoumova, R.P., Mechanisms of disease: genetic causes of familial hypercholesterolemia, Nat. Clin. Pract. Cardiovasc. Med., 2007, vol. 4, pp. 214–225.CrossRefPubMedGoogle Scholar
  18. Voevoda, M.I., Kulikov, I.V., Shakhtshneider, E.V., Maksimov, V.N., Pilipenko, I.V., Tereschenko, I.P., Kobzev, V.F., Romaschenko, A.G., and Nikitin, Yu.P., The spectrum of mutations in the low density lipoprotein receptor gene in the Russian population, Russ. J. Genet., 2008, vol. 44, no. 10, pp. 1191–1194.CrossRefGoogle Scholar
  19. Wang, H., Xu, S., Sun, L., Pan, X., Yang, S., and Wang, L., Functional characterization of two low density lipoprotein receptor gene mutations in two Chinese patients with familial hypercholesterolemia, PLoS One, 2014, vol. 9, p. e92703.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Yamamoto, T., Davis, C.G., Brown, M.S., Schneider, W.J., Casey, M.L., Goldstein, J.L., and Russell, D.W., The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA, Cell, 1984, vol. 39, pp. 27–38.CrossRefPubMedGoogle Scholar
  21. Zakharova, F.M., Tatishcheva, Yu.A., Golubkov, V.I., Lipovetsky, B.M., Konstantinov, V.O., Denisenko, A.D., Faergeman, O., Vasilyev, V.B., and Mandelshtam, M.Yu., Familial hypercholesterolemia in St. Petersburg: diversity of mutations argues against a strong founder effect, Russ. J. Genet., 2007, vol. 43, no. 9, pp. 1046–1052.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. S. Polyakov
    • 1
  • N. A. Grudinina
    • 1
  • T. Yu. Bogoslovskaya
    • 1
  • A. V. Sokolov
    • 1
    • 2
  • M. Yu. Mandelshtam
    • 1
    • 3
  • V. B. Vasilyev
    • 1
    • 2
  1. 1.Institute of Experimental MedicineSt. PetersburgRussia
  2. 2.Department of Fundamental Problems of MedicineSt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Department of BiochemistrySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations