Cell and Tissue Biology

, Volume 12, Issue 2, pp 120–126 | Cite as

The Effect of Magnetite Nanoparticles and Bacteria on the Activity of NADPH-Oxidase and Myeloperoxidase in Neutrophils of Human Blood

  • S. N. Pleskova
  • E. R. Mikheeva
  • E. V. Razumkova
  • E. E. Gornostaeva


Differences in the oxygen-dependent reactions of neutrophil granulocytes (NGs) depending on the nature of the agent affecting the cells were revealed. In vitro magnetite nanoparticles (MNPs) cause suppression of the NADPH–oxidase activity of NGs, which manifests itself in falling rates of reactions (NBT test) both with the effect of MNPs on NGs alone and a combined effect (MNPs and zymosan), as well as in the reduction of the index of activation (IA) and functional reserve of neutrophils (FRN). However, the introduction of MNPs dose-dependently stimulates the activity of myeloperoxidase (MPO). Gram-positive (S. aureus 2879 M) and gram-negative (E. coli 321) bacteria caused a respiratory burst of neutrophils, which manifested itself in a significant increase in the number of NBT-positive cells in single and combined influences (bacteria and zymosan). The lack of differences in the reaction of cells on opsonized and nonopsonized bacteria and the decrease in IA and FRN suggest that NGs are at the maximum level of functionality. Both strains of bacteria caused activation of the MPO.


neutrophil granulocytes oxygen-dependent metabolism NBT test myeloperoxidase magnetite nanoparticles gram-positive bacteria gram-negative bacteria NETosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abakumova, T.V., Antoneeva, I.I., Gening, T.P., Dolgova, D.R., and Gening, S.O., The phenotype of peripheral blood neutrophils during the early stage of endometrial cancer, Cell Tissue Biol., 2016, vol. 10, no. 3, pp. 206–212.CrossRefGoogle Scholar
  2. Astaldi, G. and Verga, L., The glycogen content of the cells of lymphatic leukaemia, Acta Haematol., 1957, vol. 17, pp. 129–135.CrossRefPubMedGoogle Scholar
  3. Barycheva, L.Yu., Erdni-Goryaeva, N.E., and Aleksandrovich, G.A., Neutrophil granulocyte functional status and expression of apoptosis markers in children with type 1 diabetes, Sakh. Diabet, 2014, vol. 3, pp. 77–82.Google Scholar
  4. Bazarnyi, V.V., Tikhonina, E.N., and Kondrashov, K.V., Determination of myeloperoxidase neutrophils in the surgical treatment of coronary heart disease, Klin. Lab. Diagn., 2012, vol. 7, pp. 8–10.Google Scholar
  5. Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., Weinrauch, Y., and Zychlinsky, A., Neutrophil extracellular traps kill bacteria, Science, 2004, vol. 303, pp. 1532–1535.CrossRefPubMedGoogle Scholar
  6. Cui, Y., Zhang, C., Luo, R., Liu, H., Zhang, Z., Xu, T., Zhang, Y., and Wang, D., Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles, Int. J. Nanomed., 2016, vol. 11, pp. 5671–5682.CrossRefGoogle Scholar
  7. De Buhr, N. and von Köckritz-Blickwede, M., How neutrophil extracellular traps become visible, J. Immunol. Res., 2016. doi 10.1155/2016/4604713Google Scholar
  8. Dontsov, V.I., Krutko, V.N., Mrikaev, B.M., and Ukhanov, S.V., Reactive oxygen species as a system: significance in physiology, pathology and natural aging, Trudy ISA RAN, 2006, vol. 19, pp. 50–69.Google Scholar
  9. Fang, H., Jiang, W., Cheng, J., Lu, Y., Liu, A., Kan, L., and Dahmen, U., Balancing innate immunity and inflammatory state via modulation of neutrophil function: a novel strategy to fight sepsis, J. Immunol. Res., 2015. doi 10.1155/2015/187048Google Scholar
  10. Gamaley, I.A. and Klyubin, I.V., Hydrogen peroxide as a signal molecule, Tsitologiia, 1996, vol. 38, no. 12, pp. 123–124.Google Scholar
  11. German, S.V., Inozemtseva, O.A., Navolokin, N.A., Pudovkina, E.E., Zuev, V.V., Volkova, E.K., Bucharskaya, A.B., Pleskova, S.N., Maslyakova, G.N., and Gorin, D.A., Synthesis of magnetite hydrosols and assessment of their impact on living systems at the cellular and tissue levels using mri and morphological investigation, Nanotekhnol. Russia, 2013, vol. 8, nos. 7–8, pp. 573–580.CrossRefGoogle Scholar
  12. Gonçalves, D.M., de Liz, R., and Girard, D., Activation of neutrophils by nanoparticles, Sci. World J., 2011, vol. 11, pp. 1877–1885.CrossRefGoogle Scholar
  13. Guldris, N., Argibay, B., Gallo, J., Iglesias-Rey, R., Carby-Argibay, E., Kolen’ko, Y.V., Campos, F., Sobrino, T., Salonen, L.M., Bacobre-Lypez, M., Castillo, J., and Rivas, J., Magnetite nanoparticles for stem cell labeling with high efficiency and long-term in vivo tracking, Bioconjug. Chem., 2017, vol. 28, pp. 362–370.CrossRefPubMedGoogle Scholar
  14. Hahn, J., Knopf, J., Maueröder, C., Kienhöfer, D., Leppkes, M., and Herrmann, M., Neutrophils and neutrophil extracellular traps orchestrate initiation and resolution of inflammation, Clin. Exp. Rheumatol., 2016, vol. 34, pp. 6–8.PubMedGoogle Scholar
  15. Jiang, Y., Liu, S., Zhang, Y., Li, H., He, H., Dai, J., Jiang, T., Ji, W., Geng, D., Elzatahry, A.A., Alghamdi, A., Fu, D., Deng, Y., and Zhao, D., Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe, Biomaterials, 2017, vol. 115, pp. 9–18.CrossRefPubMedGoogle Scholar
  16. Jirakova, K., Seneklova, M., Jirak, D., Turnovcova, K., Vosmanska, M., Babic, M., Horák, D., Veverka, P., and Jendelova, P., The effect of magnetic nanoparticles on neuronal differentiation of induced pluripotent stem cellderived neural precursors, Int. J. Nanomed., 2016, vol. 11, pp. 6267–6281.CrossRefGoogle Scholar
  17. Kannengiesser, C., Gйrard, B., El Benna, J., Henri, D., Kroviarski, Y., Chollet-Martin, S., Gougerot-Pocidalo, M.A., Elbim, C., and Grandchamp, B., Molecular epidemiology of chronic granulomatous disease in a series of 80 kindreds: identification of 31 novel mutations, Hum. Mutat., 2008, vol. 29, pp. E132–E149.CrossRefPubMedGoogle Scholar
  18. Kaplow, L.S., A histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity in smears of blood and marrow, Blood, 1955, vol. 10, pp. 1023–1029.PubMedGoogle Scholar
  19. Kim, S.H., Oh, S.N., Choi, H.S., Lee, H.S., Jun, J., Nam, Y., Lee, S.H., Lee, J.K., and Lee, H.G., USPIO enhanced lymph node MRI using 3D multi-echo GRE in a rabbit model, Contrast. Media. Mol. Imaging, 2016, vol. 11, pp. 544–549.CrossRefPubMedGoogle Scholar
  20. Kondrashova, N.M., Plekhova, N.G., Zavorueva, D.V., Somova, L.M., Geltser, B.I., and Kostyushko, A.V., Cellular factors of local protection under community acquired pneumonia, Tsitologiia, 2010, vol. 52, no. 7, pp. 588–596.PubMedGoogle Scholar
  21. Malekzadeh, A.M., Ramazani, A., Rezaei, S.J.T., and Niknejad, H., Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy, J. Colloid Interface Sci., 2017, vol. 490, pp. 64–73.CrossRefGoogle Scholar
  22. Mayanskii, A.N. and Pikuza, O.I., Klinicheskie aspekty fagotsitoza (The Clinical Aspects of Phagocytosis), Kazan: Magarif, 1993.Google Scholar
  23. Mayanskii, A.N., Patogeneticheskaya mikrobiologiya (Pathogenic Microbiology), Nizhny Novgorod: Izd. Nizhegorod. Med. Akad., 2006.Google Scholar
  24. Moutsopoulos, N.M., Konkel, J., Sarmadi, M., Eskan, M.A., Wild, T., Dutzan, N., Abusleme, L., Zenobia, C., Hosur, K.B., Abe, T., Uzel, G., Chen, W., Chavakis, T., Holland, S.M., and Hajishengallis, G., Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss, Sci. Transl. Med., 2014, vol. 6, pp. 229–240.CrossRefGoogle Scholar
  25. Odobasic, D., Kitching, R., and Holdsworth, S.R., Neutrophil-mediated regulation of innate and adaptive immunity: the role of myeloperoxidase, J. Immunol. Res., 2016. doi 10.1155/2016/2349817Google Scholar
  26. Pleskova, S.N. and Mikheeva, E.R., Modulation of oxygen-dependent and oxygen-independent metabolism of neutrophil granulocytes by quantum dots, Bull. Exp. Biol. Med., 2011, vol. 151, no. 4, pp. 452–454.CrossRefGoogle Scholar
  27. Pleskova, S.N., Gorshkova, E.N., Mikheeva, E.R., and Shushunov, A.N., Study of biocompatibility of nanoparticles with Er/Yb fluorescent centers in system with neutrophil granulocytes, Cell Tissue Biol., 2011, vol. 5, no. 4, pp. 332–338.CrossRefGoogle Scholar
  28. Pleskova, S.N., Gorshkova, E.N., Novikov, V.V., and Solioz, M., Treatment by serum up-conversion nanoparticles in the fluoride matrix changes the mechanism of cell death and the elasticity of the membrane, Micron, 2016, vol. 90, pp. 23–32.CrossRefPubMedGoogle Scholar
  29. Podosinnikov, I.S., Nilova, L.G., Babichenko, I.V., Turina, O.P., and Ponomareva, V.N., Method for determining the chemotactic activity of leukocytes, Lab. Delo, 1981, vol. 8, pp. 468–470.Google Scholar
  30. Schreiber, A. and Kettritz, R., The neutrophil in antineutrophil cytoplasmic autoantibody-associated vasculitis, J. Leukocyte Biol., 2013, vol. 94, pp. 623–631.CrossRefPubMedGoogle Scholar
  31. Shvydchenko, I.N. and Nesterova, I.V., Neutrophilic granulocytes and Helicobacter pylori-associated peptic ulcer disease, Kuban. Nauch. Med. Vestn., 2006, vol. 7–8, pp. 181–186.Google Scholar
  32. Subramanian, K.K. and Luo, H.R., Non-classical Roles of NADPH-oxidase dependent reactive oxygen species in phagocytes, in Handbook of Granulocytes: Classification, Toxic Materials Produced and Pathology, New York: Nova Science Publishers, 2009, pp. 127–154.Google Scholar
  33. Vlasova, I.I., Kapralov, A.A., Michael, Z.P., Burkert, S.C., Shurin, M.R., Star, A., Shvedova, A.A., and Kagan, V.E., Enzymatic oxidative biodegradation of nanoparticles: mechanisms, significance and applications, Toxicol. Appl. Pharmacol., 2016, vol. 299, pp. 58–69.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Yang, C.-W., Strong, B.S.I., Miller, M.J., and Unanue, E.R., Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants, J. Immunol., 2010, vol. 185, pp. 2927–2934.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. N. Pleskova
    • 1
    • 2
  • E. R. Mikheeva
    • 3
  • E. V. Razumkova
    • 1
    • 2
  • E. E. Gornostaeva
    • 3
  1. 1.Research and Education Center Physics for Solid State NanostructuresLobachevsky State UniversityNizhny NovgorodRussia
  2. 2.Department of Nanotechnology and BiotechnologyAlekseev State Technical UniversityNizhny NovgorodRussia
  3. 3.Center for Collective Use of Scientific Equipment New Materials and Resource-Saving Technologies, Scientific-Research Institute of ChemistryLobachevsky State UniversityNizhny NovgorodRussia

Personalised recommendations