Cell and Tissue Biology

, Volume 12, Issue 2, pp 160–166 | Cite as

The Effectiveness of Preimplantation Recellularization of Acellular Rat-Esophagus Matrices Using GFP-Positive Cells

  • E. V. Kuevda
  • E. A. Gubareva
  • R. Z. Nakokhov
  • I. S. Gumenyuk
  • A. S. Sotnichenko
  • D. P. Puzanov
Article
  • 1 Downloads

Abstract

The use of recellularized matrices allows obtaining tissue-engineered structures that largely reproduce the morphofunctional features of native organs and tissues. Doubts as to the advisability of preimplantation recellularization of the scaffold, which are associated with the death of prepopulation cells on the scaffold in vivo, require studying the behavior of cells on plastic and biological implants after recellularization. Rat esophagus that had undergone detergent-enzymatic decellularization was repopulated with GFP-positive cells intensely fluorescing in the green spectrum, which allowed us to trace the status of the initial cell population during cultivation on plastic and after transplantation, determine the viability and metabolic activity of cells, and conduct fluorescent detection of the cells on the scaffold before and after implantation. There were no data on the apparent cell proliferation on the matrix; however, there were indirect indications of metabolic activity and GFP synthesis by the cells that populated the scaffold before implantation.

Keywords

decellularized matrix recellularization GFP-positive cells transplantation 

Abbreviation

MSC

mesenchymal stromal cell

GFP

green fluorescent protein (a protein consisting of 238 amino acids with bright fluorescence in the green spectrum).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagaeva, V.V., Popova, V.M., Pashkova, G.S., Isadzhanyan, K.E., Nikitin, V.V., and Zhilenkov, E.L., The study the efficacy and safety of antimicrobial agents, Issled. Prakt. Med., 2015, vol. 2, no. 3, pp. 35–42.CrossRefGoogle Scholar
  2. Basu, J., Mihalko, K.L., Payne, R., Rivera, T., Knight, T., Genheimer, C.W., Guthrie, K.I., Sangha, N., Jayo, M.J., Jain, D., Bertram, T.A., and Ludlow, J.W., Extension of bladder-based organ regeneration platform for tissue engineering of esophagus, Med. Hypotheses, 2012, vol. 78, pp. 231–234.CrossRefPubMedGoogle Scholar
  3. Basu, J., Mihalko, K.L., Rivera, E.A., Guthrie, K.I., Genheimer, C.W., Sangha, N., and Ludlow, J.W., Tissue engineering of esophagus and small intestine in rodent injury models, Methods Mol. Biol., 2013, vol. 1001, pp. 311–324.CrossRefPubMedGoogle Scholar
  4. Becquart, P., Cambon-Binder, A., Monfoulet, L.E., Bourguignon, M., Vandamme, K., Bensidhoum, M., Petite, H., and Logeart-Avramoglou, D., Ischemia is the prime but not the only cause of human multipotent stromal cell death in tissue-engineered constructs in vivo, Tissue Eng. Part A, 2012, vol. 18, pp. 2084–2094.CrossRefPubMedGoogle Scholar
  5. Christ, T., Dohmen, P.M., Holinski, S., Schönau, M., Heinze, G., and Konertz, W., Suitability of the rat subdermal model for tissue engineering of heart valves, Med. Sci. Monit. Basic. Res., 2014, vol. 20, pp. 194–199.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Deng, M., Chang, Z., Hou, T., Dong, S., Pang, H., Li, Z., Luo, F., Xing, J., Yu, B., Yi, S., and Xu, J., Sustained release of bioactive protein from a lyophilized tissue-engi-neered construct promotes the osteogenic potential of mesenchymal stem cells, J. Orthop. Res., 2016, vol. 34, pp. 386–394.CrossRefPubMedGoogle Scholar
  7. Gubareva, E.A., Sjöqvist, S., Gilevich, I.V., Sotnichenko, A.S., Kuevda, E.V., Lim, M.L., Feliu, N., Lemon, G., Danilenko, K.A., Nakokhov, R.Z., Gumenyuk, I.S., Grigoriev, T.E., Krasheninnikov, S.V., Pokhotko, A.G., Basov, A.A., Dzhimak, S.S., Gustafsson, Y., Bautista, G., Rodríguez, A.B., Pokrovsky, V.M., Jungebluth, P., Chvalun, S.N., Holterman, M.J., Taylor, D.A., and Macchiarini, P., Orthotopic transplantation of a tissue engineered diaphragm in rats, Biomaterials, 2016, vol. 77, pp. 320–335.CrossRefPubMedGoogle Scholar
  8. Kuevda, E.V., Gubareva, E.A., Sotnichenko, A.S., Gumenyuk, I.S., Gilevich, I.V., Polyakov, I.S., Porkhanov, V.A., Alekseenko, S.N., and Macchiarini, P., Experience of perfusion recellularization of biological lung scaffold in rats, Vestn. Transplantol. Iskusstv. Org., 2016, vol. 18, no. 1, pp. 38–44.Google Scholar
  9. Kuevda, E.V., Gubareva, E.A., Sotnichenko, A.S., Gumenyuk, I.S., Gilevich, I.V., and Nakokhov, R.Z., Comparative characterization of assessive methods of the cytotoxic properties of biological scaffolds, Geny Kletki, 2017, vol. 12, no. 1, pp. 57–61.Google Scholar
  10. Lim, M.L., Ooi, B.N., Jungebluth, P., Sjöqvist, S., Hultman, I., Lemon, G., Gustafsson, Y., Asmundsson, J., Baiguera, S., Douagi, I., Gilevich, I., Popova, A., Haag, J.C., Rodríguez, A.B., Lim, J., Liedén, A., Nordenskjöld, M., Alici, E., Baker, D., Unger, C., Luedde, T., Vassiliev, I., Inzunza, J., Ahrlund-Richter, L., and Macchiarini, P., Characterization of stem-like cells in mucoepidermoid tracheal paediatric tumor, PLoS One, 2014, vol. 9, pp. 1–12.Google Scholar
  11. Londono, R. and Badylak, S.F., Regenerative medicine strategies for esophageal repair, Tissue Engineering Part B, 2015, vol. 21, pp. 393–410.CrossRefGoogle Scholar
  12. Lopes, M.F., Cabrita, A., Ilharco, J., Pessa, P., and Patrıcio, J., Grafts of porcine intestinal submucosa for repair of cervical and abdominal esophageal defects in the rat, J. Invest. Surg., 2006, vol. 19, pp. 105–111.CrossRefPubMedGoogle Scholar
  13. Ludman, L. and Spitz, L., Quality of life after gastric transposition for oesophageal atresia, J. Pediatr. Surg., 2003, vol. 38, pp. 53–57.CrossRefPubMedGoogle Scholar
  14. Monastyrskaya, E.A., Lyamina, S.V., and Malyshev, I.Yu., Ml and M2 phenotypes of activated macrophages and their role in immune response and pathology, Patogenez, 2008, vol. 6, no. 4, pp. 31–39.Google Scholar
  15. Tan, B., Wei, R.Q., Tan, M.Y., Luo, J.C., Deng, L., Chen, X.H., Hou, J.L., Li, X.Q., Yang, Z.M., and Xie, H.Q., Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model, J. Surg. Res., 2013, vol. 182, pp. 40–48.CrossRefPubMedGoogle Scholar
  16. Tao, R., Sun, T.J., Han, Y.Q., Xu, G., Liu, J., and Han, Y.F., Optimization of in vitro cell labeling methods for human umbilical cord-derived mesenchymal stem cells, Eur. Rev. Med. Pharmacol. Sci., 2014, vol. 18, pp. 1127–1134.PubMedGoogle Scholar
  17. Totonelli, G., Maghsoudlou, P., Garriboli, M., Riegler, J., Orlando, G., Burns, A.J., Sebire, N.J., Smith, V.V., Fishman, J.M., Ghionzoli, M., Turmaine, M., Birchall, M.A., Atala, A., Soker, S., Lythgoe, M.F., Seifalian, A., Pierro, A., Eaton, S., and De Coppi, P., A rat decellularized small bowel 15 scaffold that preserves villus-crypt architecture for intestinal regeneration, Biomaterials, 2012, vol. 33, pp. 3401–3410.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Totonelli, G., Maghsoudlou, P., Georgiades, F., Garribol, M., Koshy, K., Turmaine, M., Ashworth, M., Sebire, N.J., Pierro, A., Eaton, S., and De Coppi, P., Detergent enzymatic treatment for the development of a natural acellular matrix for oesophageal regeneration, Pediatr. Surg. Int., 2013, vol. 29, pp. 87–95.CrossRefPubMedGoogle Scholar
  19. van Vollenstee, F.A., Jackson, C., Hoffmann, D., Potgieter, M., Durandt, C., and Pepper, M.S., Human adipose derived mesenchymal stromal cells transduced with gfp lentiviral vectors: assessment of immunophenotype and differentiation capacity in vitro, Cytotechnology, 2016, vol. 68, pp. 2049–2060.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Yamamoto, Y., Nakamura, T., Shimizu, Y., Matsumoto, K., Takimoto, Y., Kiyotani, T., Sekine, T., Ueda, H., Liu, Y., and Tamura, N., Intrathoracic esophageal replacement in the dog with the use of an artificial esophagus composed of a collagen sponge with a doublelayered silicone tube, J. Thorac. Cardiovasc. Surg., 1999, vol. 118, pp. 276–286.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Kuevda
    • 1
  • E. A. Gubareva
    • 1
  • R. Z. Nakokhov
    • 1
  • I. S. Gumenyuk
    • 1
  • A. S. Sotnichenko
    • 1
  • D. P. Puzanov
    • 1
  1. 1.Kuban State Medical UniversityKrasnodarRussia

Personalised recommendations