Advertisement

Cell and Tissue Biology

, Volume 10, Issue 3, pp 217–226 | Cite as

Structural characterization of platelets and platelet microvesicles

  • A. A. Ponomareva
  • T. A. Nevzorova
  • E. R. Mordakhanova
  • I. A. Andrianova
  • R. I. Litvinov
Article

Abstract

Platelets are blood cells without nuclei, which, in conjunction with fibrin, cause bleeding to stop (hemostasis). Cellular microvesicles are microscopic particles released into extracellular space under activation and/or apoptosis of cells of different types. Platelet microvesicles form the main population of blood circulating through microvesicles and play an important role in the reactions of hemostasis, thrombosis, and many other (patho)physiological processes. Despite the large number of studies that have been devoted to the function of platelet microvesicles, the mechanisms of their formation and structural details remain poorly understood. The ultrastructure of the initial platelets and microvesicles formed in vitro from resting cells and platelets activated by arachidonic acid, ADP, thrombin, and calcium ionophore A23187 is investigated in this study. The intracellular origin, stages of formation, structural diversity, and size of microvesicles were analyzed according to the results of transmission electron microscopy of human platelets and isolated microvesicles. It was shown that thrombin, unlike other activators, not only stimulates microvesiculation of the plasma membrane, but also causes decomposition of cells with the formation of subcellular particles that have sizes comparable with the size of the microvesicles from the outer membrane of the cells. Some of these microparticles are cellular organelles surrounded by a thin membrane. The size of isolated microvesicles ranges from 30 to 500 nm, but their size distribution depends on the nature of the activating stimulus. The obtained results contain new data on the formation of platelet microvesicles and their structural diversity, which are important for understanding of their multiple functions in health and disease.

Keywords

platelets microvesicles platelet activation cell ultrastructure electron microscopy 

Abbreviations

MVs

microvesicles

OCS

open canalicular system

PCD

programmed cell death

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aatonen, M., Grönholm, M., and Siljander, P.R.-M., Platelet-derived microvesicles: multitalented participants in intercellular communication, Semin. Thromb. Hemos., 2012, vol. 38, pp. 102–113.CrossRefGoogle Scholar
  2. Akers, J.C., Gonda, D., Kim, R., Carter, B.S., and Chen, C.C., Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies, J. Neurooncol., 2013, vol. 113, pp. 1–11.CrossRefPubMedGoogle Scholar
  3. Arraud, N., Linares, R., Tan, S., Gounou, C., Pasquet, J.-M., Mornet, S., and Brisson, A.R., Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration, J. Thromb. Haemos., 2014, vol. 12, pp. 614–627.CrossRefGoogle Scholar
  4. Ayers, L., Harrison, P., Kohler, M., and Ferry, B., Procoagulant and platelet-derived microvesicle absolute counts determined by flow cytometry correlates with a measurement of their functional capacity, J. Extracell. Vesicles, 2014, vol. 3, p. 25348.CrossRefGoogle Scholar
  5. Boudreau, L.H., Duchez, A.-C., Cloutier, N., Soulet, D., Martin, N., Bollinger, J., Paré, A., Rousseau, M., Naika, G.S., Lévesque, T., Laflamme, C., Marcoux, G., Lambeau, G., Farndale, R.W., Pouliot, M., HamzehCognasse, H., Cognasse, F., Garraud, O., Nigrovic, P.A., Guderley, H., Lacroix, S., Thibault, L., Semple, J.W., Gelb, M.H., and Boilard, E., Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation, Blood, 2014, vol. 124, pp. 2173–2183.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Burnouf, T., Goubran, H.A., Chou, M.L., Devos, D., and Radosevic, M., Platelet microparticles: detection and assessment of their paradoxical functional roles in disease and regenerative medicine, Blood Rev., 2014, vol. 28, pp. 155–166.CrossRefPubMedGoogle Scholar
  7. George, J.N., Thoi, L.L., McManus, L.M., and Reimann, T.A., Isolation of human platelet membrane microparticles from plasma and serum, Blood, 1982, vol. 60, pp. 834–840.PubMedGoogle Scholar
  8. Gyulkhandanyan, A.V., Mutlu, A., Freedman, J., and Leytinet, V., Markers of platelet apoptosis: methodology and applications, J. Thromb. Thrombolysis, 2012, vol. 33, pp. 397–411.CrossRefPubMedGoogle Scholar
  9. Heijnen, H.F.G., Schiel, A.E., Fijnheer, R., Geuze, H.J., and Sixma, J.J., Exocytosis of multivesicular bodies and Αgranules microvesicles by surface shedding and exosomes derived from activated platelets release two types of membrane vesicles, Blood, 1999, vol. 94, pp. 3791–3799.PubMedGoogle Scholar
  10. James, G. and White, M.D., Exocytosis of secretory organelles from blood platelets incubated with cationic polypeptides, Am J. Pathol., 1972, vol. 69, pp. 41–54.Google Scholar
  11. Johnstone, R.M., Adam, M, Hammond, J.R., Orr, L, and Turbide, C., Vesicle formation during reticulocyte maturation, association of plasma membrane activities with released vesicles (exosomes), J. Biol. Chem., 1987, vol. 262, pp. 9412–9420.PubMedGoogle Scholar
  12. Kelton, J.G., The pathophysiology of Hepa-induced thrombocytopenia. Biological basis for treatment, Chest, 2005, vol. 127, pp. 9–20.CrossRefGoogle Scholar
  13. Lacroix, R., Robert, S., Poncelet, P., Kasthuri, R.S., Key, N.S., and Dignat-George, F., Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative Workshop, J. Thromb. Haemos., 2010, vol. 8, pp. 2571–2574.CrossRefGoogle Scholar
  14. Leytin, V., Allen, D.J., Mykhaylov, S., Lyubimov, E., and Freedman, J., Thrombin-triggered platelet apoptosis, J. Thromb. Haemos., 2006, vol. 4, pp. 2656–2663.CrossRefGoogle Scholar
  15. Neumüller, J., Meisslitzer-Ruppitscha, C., Ellinger, A., Pavelkaa, M., Jungbauer, C., Renzb, R., Leitner, G., and Wagner, T., Monitoring of platelet activation in platelet concentrates using transmission electron microscopy, Transfus. Med. Hemother., 2013, vol. 40, pp. 101–107.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Nieuwland, R., van, der, Pol, E., Gardiner, C., and Sturk, A., Platelet-derived microparticles, in Platelets, 3rd ed., Amsterdam: Academic Press Elsevier, 2013, vol. 453–467.Google Scholar
  17. Nomura, S., Ozaki, Y., and Ikeda, Y., Function and role of microparticles in various clinical settings, Thromb. Res., 2008, vol. 123, pp. 8–23.CrossRefPubMedGoogle Scholar
  18. Nomura, S. and Shimizu, M., Clinical significance of procoagulant microparticles, J. Intens. Care, 2015, vol. 3, pp. 1–11.CrossRefGoogle Scholar
  19. Owens, A.P. and Mackman, N., Microparticles in hemostasis and thrombosis, Circ. Res., 2011, vol. 108, pp. 1284–1297.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Polasek, J., The appearance of multivesicular structures during platelet activation as observed by scanning electron microscopy, Thromb. Res., 1982, vol. 28, pp. 433–437.CrossRefPubMedGoogle Scholar
  21. Stein, J.M. and Luzio, J.P., Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles, Biochem. J., 1991, vol. 274, pp. 381–386.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Thushara, R.M., Hemshekhar, M., Kemparaju, K., Rangappa, K.S., Devaraja, S., and Girish, K.S., Therapeutic drug-induced platelet apoptosis: an overlooked issue in pharmacotoxicology, Arch. Toxicol., 2014, vol. 88, pp. 185–198.CrossRefPubMedGoogle Scholar
  23. Thushara, R.M., Hemshekhar, M., Basappa Kemparaju, K., Rangappa, K.S., and Girish, K.S., Biologicals, platelet apoptosis and human diseases: an outlook, Crit Rev. Oncol. Hematol., 2015, vol. 93, pp. 149–158.CrossRefPubMedGoogle Scholar
  24. Van der Pol, E., Hoekstra, A.G., Sturk, A., Otto, C., Van Leeuwen, T.G., and Nleuwland, R., Optical and nonoptical methods for detection and characterization of microparticles and exosomes, J. Thrombos. Haemos., 2012, vol. 8, pp. 2596–2607.Google Scholar
  25. Varon, D. and Shai, E., Platelets and their microparticles as key players in pathophysiological responses, J. Thromb. Haemos., 2015, vol. 13, pp. 40–46.CrossRefGoogle Scholar
  26. Zucker, W.H., Shermer, R.W., and Mason, R.G., Ultrastructural comparison of human platelets separated from blood by various means, Am. J. Pathol., 1974, vol. 77, pp. 255–268.PubMedPubMedCentralGoogle Scholar
  27. Zubairov, D.M. and Zubairova, L.D., Mikrovezikuly v krovi. Funktsii i ikh rol' v tromboobrazovanii (Microvesicles in the Blood. The Functions and Their Role in Thrombus Formation), Moscow: GEOTAR-Media, 2009.Google Scholar
  28. Zwicker, J.I., Tissue factor-bearing microparticles and cancer, Semin. Thromb. Hemos., 2008, vol. 34, pp. 195–8.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Ponomareva
    • 1
    • 2
  • T. A. Nevzorova
    • 2
  • E. R. Mordakhanova
    • 2
  • I. A. Andrianova
    • 2
  • R. I. Litvinov
    • 2
  1. 1.Kazan Institute of Biochemistry and BiophysicsKazan Scientific Center of the Russian Academy of SciencesKazan, TatarstanRussia
  2. 2.Institute of Fundamental Medicine and BiologyKazan (Volga Region) Federal UniversityKazan, TatarstanRussia

Personalised recommendations