Skip to main content
Log in

Functional linkage between the transport characteristics of the MDCK1 cell monolayer and their actin cytoskeleton organization

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The dynamics of the actin cytoskeleton spatial organization and transepithelial electric resistance (TEER) in the MDCK1 cell monolayer exposed to arginine–vasopressin (AVP) and forskolin, a protein kinase A (PKA) activator, have been studied. These physiologically active substances are shown to depolymerize filamentous actin in MDCK1 cells (in both the apical and basal cytoplasm) and, concurrently, to considerably decrease the TEER of the cell monolayer. A decrease in TEER suggests an increase in the ion current through the cell monolayer. Correspondingly, the created ion gradient stimulates AVP-sensitive water flow. To clarify the routes of ions and water in MDCK monolayer, the localization of claudin-1 and -2 in tight junctions of ATCC (American Type Culture Collection) MDCK (a low TEER) and MDCK1 (a high TEER) cells was studied by immunofluorescence assay. Claudin-1 and -2 are detectable in the tight junctions of ATCC MDCK cells; however, the tight junctions of MDCK1 cells contain only claudin-1, whereas poreforming claudin-2 is absent. The exposure of MDCK1 cells to forskolin fails to change the distribution of the studied claudins, thereby suggesting that a decrease in TEER caused by forskolin is associated with a change in transcellular, rather than paracellular, permeability of the monolayer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

cAMP:

cyclic adenosine monophosphate

ATCC:

American Type Culture Collection

AVP:

arginine vasopressin

MR:

mineralocorticoid receptor

PKA:

protein kinase A

ENaC:

epithelial Na channel

TEER:

transepithelial electric resistance

References

  • Ammer, A.G. and Weed, S.A., Cortactin branches out: roles in regulating protrusive actin dynamics, Cell Motil. Cytoskel., 2008, vol. 65, pp. 687–707.

    Article  CAS  Google Scholar 

  • Anderson, J., Van Itallie, C., and Fanning, A., Setting up a selective barrier at the apical junction complex, Curr. Opin. Cell Biol., 2004, vol. 1–16, pp. 140–145.

    Article  Google Scholar 

  • Angelow, S. and Yu, A.S., Claudins and paracellular transport: an update, Curr. Opin. Nephrol. Hypertens., 2007, vol. 16, pp. 459–464.

    Article  CAS  PubMed  Google Scholar 

  • Ashkroft, F.M., Ion Channels and Disease, San Diego, CA: Academic Press, 2000, pp. 1–502.

    Book  Google Scholar 

  • Bankir, L., Fernandes, S., Bardoux, P., Bouby, N., and Bichet, D.G., Vasopressin-V2 receptor stimulation reduces sodium excretion in healthy humans, J. Amer. Soc. Nephrol., 2005, vol. 16, pp. 1920–1928.

    Article  CAS  Google Scholar 

  • Barberis, C., Mouillac, B., and Durroux, T., Structural bases of vasopressin/oxytocin receptor function, J. Endocrinol., 1998, vol. 156, pp. 223–229.

    Article  CAS  PubMed  Google Scholar 

  • Barker, G. and Simmons, N., Identification of two strains of cultured canine renal epithelial cells (MDCK cells) which display entirely different physiological properties, Quart. J. Exp. Physiol., 1981, vol. 66, pp. 61–72.

    Article  CAS  Google Scholar 

  • Bens, M., Chassin, C., and Vandewalle, A., Regulation of NaCl transport in the renal collecting duct: lessons from cultured cells, Eur. J. Physiol., 2006, vol. 453, pp. 133–146.

    Article  CAS  Google Scholar 

  • Benson, K., Cramer, S., and Galla, H.J., Impedance-based cell monitoring: barrier properties and beyond, Fluids Barriers CNS, 2013, vol. 10, p. 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berdiev, B.K., Prat, A.G., Cantiello, H.F., Dennis, A., Ausiello, D.A., Fuller, C.M., Jovov, B., Benos, D.J., and Ismailov, I.I., Regulation of epithelial sodium channels by short actin filaments, J. Biol. Chem., 1996, vol. 271, pp. 17704–17710.

    Article  CAS  PubMed  Google Scholar 

  • Berdiev, B.K., Latorre, R., Benos, D.J., and Ismailov, I.I., Actin modifies Ca2+ block of epithelial Na+ channels in planar lipid bilayers, Biophys. J., 2001, vol. 80, pp. 2176–2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazer-Yost, B., Record, R., and Oberleithner, H., Characterization of hormone-stimulated Na+ transport in a highresistance clone of the MDCK cell line, Eur. J. Physiol., 1996, vol. 432, pp. 685–691.

    Article  CAS  Google Scholar 

  • Brown, D., Breton, S., Ausiello, D.A., and Marshansky, V., Sensing, signaling and sorting events in kidney epithelial cell physiology, Traffic, 2009, vol. 10, pp. 275–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugaj, V., Pochynyuk, O., and Stockand, J.D., Activation of the epithelial Na channel in the collecting duct by vasopressin contributes to water reabsorption, Amer. J. Physiol., 2009, vol. 297, pp. F1411–F1418.

    CAS  Google Scholar 

  • Butterworth, M.B., Edinger, R.S., Johnson, J.P, and Frizzell, R.A., Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool, J. Gen. Physiol., 2005, vol. 125, pp. 81–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bystriansky, J. and Kaplan, J., Sodium pump localization in epithelia, J Bioenerg. Biomembr., 2007, vol. 39, pp. 373–378.

    Article  CAS  PubMed  Google Scholar 

  • Cantiello, H.F., Stow, J.L., Prat, A.G., and Ausiello, D.A., Actin filaments regulate epithelial Na+ channel activity, Amer. J. Physiol., 1991, vol. 261, pp. C882–C888.

    CAS  PubMed  Google Scholar 

  • Caplan, M.J., Anderson, H.C., Palade, G.E., and Jamieson, J.D., Intracellular sorting and polarized cell surface delivery of (Na+,K+)ATPase, an endogenous component of MDCK cell basolateral plasma membranes, Cell, 1986, vol. 46, pp. 623–631.

    Article  CAS  PubMed  Google Scholar 

  • Cereijido, M., Robbins, E.S., Dolan, W.J., Rotunno, C.A., and Sabatini, D.D., Polarized monolayers formed by epithelial cells on a permeable and translucent support, J. Cell Biol., 1978, vol. 77, pp. 853–880.

    Article  CAS  PubMed  Google Scholar 

  • Cereijido, M., Ehrenfeld, J., Fernindez-Castelo, S., and Meza, I., Fluxes, junctions, and blisters in cultured monolayers of epithelioid cells (MDCK), Ann. N.Y. Acad. Sci., 1981a, vol. 372, pp. 422–441.

    Article  CAS  PubMed  Google Scholar 

  • Cereijido, M., Meza, I., and Martinez-Palomo, A., Occluding junctions in cultured epithelial monolayers, Amer. J. Physiol., 1981b, vol. 240, pp. C96–C102.

    CAS  PubMed  Google Scholar 

  • Chen, S.Y., Bhargava, A., Mastroberardino, L., Meijer, O.C., Wang, J., Buse, P., Firestone, G., Verrey, F., and Pearce, D., Epithelial sodium channel regulated by aldosteroneinduced protein sgk, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 2514–2519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copeland, S.J., Berdiev, B.K., Ji, H.L., Lockhart, J., Parker, S., Fuller, C.M., and Benos, D.J., Regions in the carboxy terminus of alpha-bENaC involved in gating and functional effects of actin, Amer. J. Physiol., 2001, vol. 281, pp. C231–C240.

    CAS  Google Scholar 

  • Eaton, D.C., Malik, B., Bao, H..F, Yu, L., and Jain, L., Regulation of epithelial sodium channel trafficking by ubiquitination, Proc. Amer. Thorac. Soc., 2010, vol. 7, pp. 54–64.

    Article  Google Scholar 

  • Elkouby-Naor, L. and Ben-Yosef, T., Functions of claudin tight junction proteins and their complex interactions in various physiological systems, Int. Rev. Cell Mol. Biol., 2010, vol. 279, pp. 1–32.

    Article  CAS  PubMed  Google Scholar 

  • Erlij, D., De, Smet, P., Mesotten, D., and Van Driessche, W., Forskolin increases apical sodium conductance in cultured toad kidney cells (A6) by stimulating membrane insertion, Pflügers Arch., 1999, vol. 438, pp. 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Frindt, G. and Burg, M.B., Effect of vasopressin on sodium transport in renal cortical collecting tubules, Kidney Int., 1972, vol. 1, pp. 224–231.

    Article  CAS  PubMed  Google Scholar 

  • Furuse, M., Furuse, K., Sasaki, H., and Tsukita, S., Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin–Darby canine kidney I cells, J. Cell Biol., 2001, vol. 153, pp. 263–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garty, H. and Edelman, I.S., Amiloride-sensitive trypsinization of apical sodium channels, analysis of hormonal regulation of sodium transport in toad bladder, J. Gen. Physiol., 1983, vol. 81, pp. 785–803.

    Article  CAS  PubMed  Google Scholar 

  • Garty, H. and Palmer, L.G., Epithelial sodium channels: function, structure, and regulation, Physiol. Rev., 1997, vol. 77, pp. 359–396.

    CAS  PubMed  Google Scholar 

  • Gekle, M, Wunsch, S, Oberleithner, H, and Silbernagl, S., Characterization of two MDCK-cell subtypes as a model system to study principal cell and intercalated cell properties, Pflugers Arch., 1994, vol. 428, pp. 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Gorshkov, A.N. and Komissarchik, Ia.Iu., Structural rearrangements of microfilaments and granular cells of the frog bladder during induction of water transport: fluorescent microscopic, immunocytochemical and electron microscopic studies, Tsitologiia, 1997, vol. 39, 11, pp. 1032–1037.

    CAS  PubMed  Google Scholar 

  • Hall, A. and Nobes, C.D., Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2000, vol. 355, pp. 965–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handler, J., Use of cultured epithelia to study transport and its regulation, J. Exp. Biol., 1983, vol. 106, pp. 55–69.

    CAS  PubMed  Google Scholar 

  • Hays, R., Condeelis, J., Gao, Y., Simon, H., Ding, G., and Franki, N., The effect of the vasopressin on the cytoskeleton of the epithelial cell, Pediatr. Nephrol., 1993, vol. 7, pp. 672–679.

    Article  CAS  PubMed  Google Scholar 

  • Ilatovskaya, D.V., Pavlov, T.S., Levchenko, V., Negulyaev, Y.A., and Staruschenko, A., Cortical actin binding protein cortactin mediates ENaC activity via Arp2/3 complex, FASEB J., 2011, vol. 25, pp. 2688–2699.

    Article  CAS  PubMed  Google Scholar 

  • Inai, T., Kobayashi, J., and Shibata, Y., Claudin-1 contributes to the epithelial barrier function in MDCK cells, Eur. J. Cell Biol., 1999, vol. 78, pp. 849–855.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova, L.N., Vasopressin: cellular and molecular aspects of its antidiuretic effect, Vestn. Ross. Akad. Med. Nauk, 1999, vol. 3, pp. 40–45.

    PubMed  Google Scholar 

  • Jeffries, W.B., Wang, Y., and Pettinger, W.A., Enhanced vasopressin (V2-receptor)-induced sodium retention in mineralocorticoid hypertension, Amer. J. Physiol., 1988, vol. 254, pp. F739–F746.

    CAS  PubMed  Google Scholar 

  • Jovov, B., Tousson, A., Ji, H.L., Keeton, D., Shlyonsky, V., Ripoll, P.J., Fuller, C.M., and Benos, D.J., Regulation of epithelial Na(+) channels by actin in planar lipid bilayers and in the Xenopus oocyte expression system, J. Biol. Chem., 1999, vol. 274, pp. 37845–37854.

    Article  CAS  PubMed  Google Scholar 

  • Karpushev, A.V., Ilatovskaya, D.V., Pavlov, T.S., Negulyaev, Y.A., and Staruschenko, A., Intact cytoskeleton is required for small G protein dependent activation of the epithelial Na+ channel, PLoS ONE, 2010, vol. 5, p. e8827.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karpushev, A.V., Levchenko, V., Ilatovskaya, D.V., Pavlov, T.S., and Staruschenko, A., Novel role of Rac1/WAVE signaling mechanism in regulation of the epithelial Na+ channel, Hypertension, 2011, vol. 2011 57, pp. 996–1002.

    Article  Google Scholar 

  • Klussmann, E., Tamma, G., Lorenz, D., Wiesner, B., Maric, K., Hofmann, F., Aktories, K., Valenti, G., and Rosenthal, W., An inhibitory role of Rho in the vasopressinmediated translocation of aquaporin-2 into cell membranes of renal principal cells, J. Biol. Chem., 2001, vol. 276, pp. 20451–20457.

    Article  CAS  PubMed  Google Scholar 

  • Komissarchik, Ia.Iu. and Snigirevskaia, E.S., The participation of intracellular membranes in forming highly permeable domains in the plasma membrane of epithelial cells during the vasopressin stimulation of water transport, Tsitologiia, 1991, vol. 33, 11, pp. 135–140.

    CAS  Google Scholar 

  • Krause, G., Winkler, L., Mueller, S.L., Haseloff, R.F., Piontek, J., and Blasig, I.E., Structure and function of claudins, Biochim. Biophys. Acta, 2008, vol. 1778, pp. 631–645.

    Article  CAS  PubMed  Google Scholar 

  • Kreisberg, J., and Wilson, P., Renal cell culture, J. Electron Microsc. Tech., 1988, vol. 9, pp. 235–263.

    Article  CAS  PubMed  Google Scholar 

  • Loffing, J. and Korbmacher, C., Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC), Pflugers Arch., 2009, vol. 458, pp. 111–135.

    Article  CAS  PubMed  Google Scholar 

  • Loffing, J., Zecevic, M., Féraille, E., Kaissling, B., Asher, C., Rossier, B.C., Firestone, G.L., Pearce, D., and Verrey, F., Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK, Amer. J. Physiol., 2001, vol. 280, pp. F675–F682.

    CAS  Google Scholar 

  • Marunaka, Y., Hormonal and osmotic regulation of NaCl transport in renal distal nephron epithelium, Japan. J. Physiol., 1997, vol. 47, pp. 499–511.

    Article  CAS  Google Scholar 

  • Marunaka, Y. and Eaton, D.C., Effects of vasopressin and cAMP on single amiloride-blockable Na channels, Amer. J. Physiol., 1991, vol. 260, pp. C1071–C1084.

    CAS  PubMed  Google Scholar 

  • Mazzochi, C., Benos, D.J., and Smith, P.R., Interaction of epithelial ion channels with the actin-based cytoskeleton, Amer. J. Physiol., 2006a, vol. 291, pp. F1113–F1122.

    CAS  Google Scholar 

  • Mazzochi, C., Bubien, J.K., Smith, P.R., and Benos, D.J., The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin, J. Biol. Chem., 2006b, vol. 281, pp. 6528–6538.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, K.M., Francis, S.A., McCormack, J.M., Lai, J., Rogers, R.A., Skare, I.B., Lynch, R.D., and Schneeberger, E.E., Inducible expression of claudin-1-myc but not occludin-VSV-G results in aberrant tight junction strand formation in MDCK cells, J. Cell Sci., 2000, vol. 113, pp. 3387–3398.

    CAS  PubMed  Google Scholar 

  • Mel’nitskaia, A.V., Krutetskaia, Z.I., and Lebedev, O.E., Structural and functional organization of Na+ transport in epithelial systems. I. Epithelial Na+ channels, Tsitologiia, 2006, vol. 48, 10, pp. 817–840.

    PubMed  Google Scholar 

  • Mishler, D., Kraut, J., and Nagami, G., AVP reduces transepithelial resistance across IMCD cell monolayers, Amer. J. Physiol., 1990, vol. 258, pp. F1561–F1568.

    CAS  PubMed  Google Scholar 

  • Morris, R.G. and Schafer, J.A., cAMP increases density of ENaC subunits in the apical membrane of MDCK cells in direct proportion to amiloridesensitive Na(+) transport, J. Gen. Physiol., 2002, vol. 120, pp. 71–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller, J. and Kachadorian, W., Aggregate-carrying membranes during ADH-stimulation and washout in toad bladder, Amer. J. Physiol., 1984, vol. 247, pp. C90–C98.

    CAS  PubMed  Google Scholar 

  • Nakamura, F., Stossel, T.P., and Hartwig, J.H., The filamins: organizers of cell structure and function, Cell Adh. Migr., 2011, vol. 5, pp. 160–169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nejsum, L., Zelenina, M., Aperia, A., Frokiaer, J., and Nielsen, S., Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation, Amer. J. Physiol., 2005, vol. 288, pp. F930–938.

    CAS  Google Scholar 

  • Nielsen, S., Chou, C., Marples, D., Christensen, E., Kishore, B., and Knepper, M., Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 1013–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niisato, N. and Marunaka, Y., Activation of the Na+-K+ pump by hyposmolality through tyrosine kinase-dependent Cl conductance in Xenopus renal epithelial A6 cells, J. Physiol., 1999, vol. 518, pp. 417–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberleithner, H., Aldosterone-regulated ion transporters in the kidney, Klin. Wochenschr., 1990, vol. 68, pp. 1087–1090.

    Article  CAS  PubMed  Google Scholar 

  • Pinaev, G.P., Contractile systems of a cell: from muscle contraction to regulation of cell functions, Tsitologiia, 2009, vol. 51, 3, pp. 172–181.

    CAS  PubMed  Google Scholar 

  • Pochynyuk, O., Medina, J., Gamper, N., Genth, H., Stockand, J.D., and Staruschenko, A., Rapid translocation and insertion of the epithelial Na+ channel in response to RhoA signaling, J. Biol. Chem., 2006, vol. 281, pp. 26520–26527.

    Article  CAS  PubMed  Google Scholar 

  • Prat, A.G., Bertorello, A.M., Ausiello, D.A., and Cantiello, H.F., Activation of epithelial Na+ channels by protein kinase A requires actin filaments, Amer. J. Physiol., 1993, vol. 265, pp. C224–C233.

    CAS  PubMed  Google Scholar 

  • Rehn, M., Weber, W.-M., and Clauss, W., Role of the cytoskeleton in stimulation of Na+ channels in A6 cells by changes in osmolality, Eur. J. Physiol., 1998, vol. 436, pp. 270–279.

    CAS  Google Scholar 

  • Reif, M.C., Troutman, S.L., and Schafer, J.A., Sodium transport by rat cortical collecting tubule, effects of vasopressin and desoxycorticosterone, J. Clin. Invest., 1986, vol. 77, pp. 1291–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reifenberger, M.S., Yu, L., Bao, H.-F., Duke, B.J., Liu, B.-C., Ma, H.-P., Alli, A.A., Eaton, D.C., and Alli, A., Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells, Amer. J. Physiol., 2014, vol. 307, pp. F86–F95.

    CAS  Google Scholar 

  • Richardson, J., Scalera, V., and Simmons, N., Identification of two strains of MDCK cells which resemble separate nephron tubule segments, Biochim. Biophys. Acta, 1981, vol. 673, pp. 26–36.

    Article  CAS  PubMed  Google Scholar 

  • Saier, M.H., Jr., Boerner, P., Grenier, F.C., McRoberts, J.A., Rindler, M.J., and Taub, M., Sodium entry pathways in renal epithelial cell lines, Miner. Electrolyte Metab., 1986, vol. 12, pp. 42–50.

    PubMed  Google Scholar 

  • Saxena, S.K. and Kaur, S., Regulation of epithelial ion channels by Rab GTPases, Biochem. Biophys. Res. Commun., 2006, vol. 351, pp. 582–587.

    Article  CAS  PubMed  Google Scholar 

  • Schafer, J.A. and Troutman, S.L., cAMP mediates the increase in apical membrane Na+ conductance produced in rat CCD by vasopressin, Amer. J. Physiol., 1990, vol. 259, pp. F823–F831.

    CAS  PubMed  Google Scholar 

  • Simon, H., Gao, Y., Franki, N., and Hays, R., Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct, Amer. J. Physiol., 1993, vol. 265, pp. C757–C762.

    CAS  PubMed  Google Scholar 

  • Skorecki, K., Brown, D., Ercolani, L., and Ausiello, D., Molecular mechanisms of vasopressin action in the kidney, in Handbook of Physiology, Sect. 8: Renal Physiology, Windhager, E., Ed., New York, Oxford, 1992, pp. 1185–1218.

    Google Scholar 

  • Srinivasan, B., Kolli, A.R., Esch, M.B., Abaci, H.E., Shuler, M.L., and Hickman, J.J., TEER measurement mechniques for in vitro barrier model systems, J. Lab. Autom., 2015, vol. 20, pp. 107–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staruschenko, A., Patel, P., Tong, Q., Medina, J.L., and Stockand, J.D., Ras activates the epithelial Na(+) channel through phosphoinositide 3-OH kinase signaling, J. Biol. Chem., 2004, vol. 279, pp. 37771–37778.

    Article  CAS  PubMed  Google Scholar 

  • Staruschenko, A., Pochynyuk, O.M., Tong, Q., and Stockand, J.D., Ras couples phosphoinositide 3-OH kinase to the epithelial Na+ channel, Biochim. Biophys. Acta, 2005, vol. 1669, pp. 108–115.

    Article  CAS  PubMed  Google Scholar 

  • Staub, O., Abriel, H., Plant, P., Ishikawa, T., Kanelis, V., Saleki, R., Horisberger, J.D., Schild, L., and Rotin, D., Regulation of the epithelial Na+ channel by Nedd4 and ubiquitination, Kidney Int., 2000, vol. 57, pp. 809–815.

    Article  CAS  PubMed  Google Scholar 

  • Stockand, J.D., Vasopressin regulation of renal sodium excretion, Kidney Int., 2010, vol. 78, pp. 849–856.

    Article  CAS  PubMed  Google Scholar 

  • Tanner, C., Frambach, D.A., and Misfeldt, D.S., Biophysics of domes formed by the renal cell line Madin–Darby canine kidney, Fed. Proc., 1984, vol. 43, pp. 2217–2220.

    CAS  PubMed  Google Scholar 

  • Van Itallie, C., Holmes, J., Bridges, A., Gookin, J., Coccaro, M., Proctor, W., Colegio, O., and Anderson, J., The density of small tight junction pores varies among cell types and increased expression of claudin-2, J. Cell Sci., 2008, vol. 121, pp. 298–305.

    Article  PubMed  Google Scholar 

  • Verhovez, A., Williams, T.A., Monticone, S., Crudo, V., Burrello, J., Galmozzi, M., Covella, M., Veglio, F., and Mulatero, P., Genomic and non-genomic effects of aldosterone, Curr. Sign. Transd. Ther., 2012, vol. 7, pp. 132–141.

    Article  CAS  Google Scholar 

  • Verrey, F., Kraehenbuhl, J.P., and Rossier, B.C., Aldosterone induces a rapid increase in the rate of Na,K-ATPase gene transcription in cultured kidney cells, Mol. Endocrinol., 1989, vol. 3, pp. 1369–1376.

    Article  CAS  PubMed  Google Scholar 

  • Vinciguerra, M., Mordasini, D., Vandewalle, A., and Feraille, E., Hormonal and nonhormonal mechanisms of regulation of the Na,K-pump in collecting duct principal cells, Semin. Nephrol., 2005, vol. 25, pp. 312–321.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Dai, X.Q., Li, Q., Tuli, J., Liang, G., Li, S.S., and Chen, X.Z., Filamin interacts with epithelial sodium channel and inhibits its channel function, J. Biol. Chem., 2013, vol. 288, pp. 264–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Gorshkov.

Additional information

Original Russian Text © A.N. Gorshkov, M.R. Zaitseva, E.S. Snigirevskaya, Ya.Yu. Komissarchik, 2015, published in Tsitologiya, 2015, Vol. 57, No. 11, pp. 796–807.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, A.N., Zaitseva, M.R., Snigirevskaya, E.S. et al. Functional linkage between the transport characteristics of the MDCK1 cell monolayer and their actin cytoskeleton organization. Cell Tiss. Biol. 10, 133–144 (2016). https://doi.org/10.1134/S1990519X1602005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X1602005X

Keywords

Navigation