Advertisement

Cell and Tissue Biology

, Volume 10, Issue 1, pp 1–9 | Cite as

Characterization of a novel mesenchymal stem cell line derived from human embryonic stem cells

  • A. M. Koltsova
  • V. V. Zenin
  • T. K. Yakovleva
  • G. G. Poljanskaya
Article

Abstract

A novel nonimmortalized fibroblast-like cell line SC6-MSC was derived from SC6 human embryonic stem cells (ESCs). Numerical and structural karyotypic analyses of these cells have revealed that it is hypodiploid: 45, X0. SC6-MSC average population doubling time was 26.0 ± 0.4 h at the 8th passage and 82.0 ± 9.2 h at the 18th passage. The growth curves showed active proliferation during passages 8–10 and consequent gradual decrease of the proliferative activity that stopped by the 20th passage. Flow cytometry analysis of surface markers has been carried to determine the line status. Revealed positive expression of CD44, CD73, CD90, CD105, and HLA-ABC and lack of CD34 and HLA-DR surface antigens are common for mesenchymal stem cells (MSCs). However, expression of CD90 and CD105 surface markers was significantly lower than for other MSC lines, including the line SC5-MSC derived from human ESC line SC5. Immunofluorescence analysis of surface markers and Oct-4 transcription factor, characteristic for human embryonic stem cells, showed the lack of Oct-4 expression and the presence of SSEA-4 and TRA-1-60 typical for a number of karyotypically normal MSC lines. Immunofluorescence assay showed the presence of the early differentiation markers of three germ layer derivates common for human ESCs. This shows that MSCs may be useful for reparation of tissue damage in corresponding microenvironments. It was revealed that SC6-MSC cells were able to differentiate into osteogenic and chondrogenic, but not adipogenic, directions. The results obtained indicate with high probability that disordered chromosomal and, accordingly, gene balance, in SC6-MSC line with karyotype 45, X0 result in decreased differential potential and expression of CD90 associated with the processes of cell differentiation and aging.

Keywords

mesenchymal stem cell lines karyotypic instability immunofluorescence analysis cell markers differentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alimperti, S., Lei, P., Wen, Y., Tian, J., Campbell, A.M., and Andreadis, S.T., Serum-free spheroid suspension culture maintains mesenchymal stem cell proliferation and differentiation potential, Biotechnol. Prog., 2014, vol. 30, pp. 974–4.CrossRefPubMedGoogle Scholar
  2. Antonucci, I., Stuppia, L., Kaneko, Y., Yu, S., Tajiri, N., Bae, E.C., Chheda, S.H., Weinbren, N.L., and Borlongan, C.V., Amniotic fluid as rich source of mesenchymal stromal cells for transplantation therapy, Cell Transplant., 2011, vol. 20, pp. 789–4.CrossRefPubMedGoogle Scholar
  3. Barberi, T., Willis, L.M., Socci, N.D., and Studer, L., Derivation of multipotent mesenchymal precursors from human embryonic stem cells, PLoS Med., 2005, vol. 2, pp. e161.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Barbet, R., Peiffer, I., Hatzfeld, A., Charbord, P., and Hatzfeld, J.A., Comparison of gene expression in human embryonic stem cells, hesc-derived mesenchymal stem cells and human mesenchymal stem cells, Stem Cells Int., 2011, vol. 2011, pp. 368192.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Ben-David, U., Mayshar, Y., and Benvenisty, N., Largescale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells, Cell Stem Cell, 2011, vol. 92, pp. 97–4.CrossRefGoogle Scholar
  6. Bisson, A., Le, Corre, S., Joly-Helas, G., Chambon, P., Demoulins, L., Jean, L., Adriouch, S., Drouot, L., Giverne, C., Roussel, F., Jacquot, S., Doucet, C., Michot, F., Lamacz, M., Frébourg, T., Flaman, J.M., and Boyer, O., Chromosomal instability but lack of transformation in human myoblast preparations, Cell Transplant., 2014, vol. 23, pp. 1475–4.CrossRefPubMedGoogle Scholar
  7. Bosman, A., Letourneau, A., Sartiani, L., Del, Lungo, M., Ronzoni, F., Kuziakiv, R., Tohonen, V., Zucchelli, M., Santoni, F., Guipponi, M., Dumevska, B., Hovatta, O., Antonarakis, S.E, and Jaconi, M.E., Perturbations of heart development and function in cardiomyocytes from human embryonic stem cells with trisomy 21, Stem Cells, 2015, vol. 33, pp. 1434–4.CrossRefPubMedGoogle Scholar
  8. Caplan, A.I. and Dennis, J.E., Mesenchymal stem cells as trophic mediators, J. Cell Biochem., 2006, vol. 98, pp. 1076–4.CrossRefPubMedGoogle Scholar
  9. Carrel, L., and Willard, H.F., X-inactivation profile reveals extensive variability in X-linked gene expression in females, Nature, 2005, vol. 434, pp. 400–4.CrossRefPubMedGoogle Scholar
  10. Choo, A., and Lim, S.K., Derivation of Mesenchymal stem Cells from Human Embryonic stem Cells, Methods Mol. Biol., 2011, vol. 690, pp. 175–4.CrossRefPubMedGoogle Scholar
  11. de Peppo, G.M., Svensson, S., Lennerås, M., Synnergren, J., Stenberg, J., Strehl, R., Hyllner, J., Thomsen, P., and Karlsson, C., Human embryonic mesodermal progenitors highly resemble human mesenchymal stem cells and display high potential for tissue engineering applications, Tissue Eng. (A), 2010, vol. 16, pp. 2161–4.CrossRefGoogle Scholar
  12. de Peppo, G.M., Sladkova, M., Sjövall, P., Palmquist, A., Oudina, K., Hyllner, J., Thomsen, P., Petite, H., and Karlsson, C., Human Embryonic stem cell-derived mesodermal progenitors display substantially increased tissue formation compared to human mesenchymal stem cells under dynamic culture conditions in a packed bed/column bioreactor, Tissue Eng. (A), 2013, vol. 19, pp. 175–4.CrossRefGoogle Scholar
  13. Ding, D.C., Chang, Y.H., Shyu, W.C., and Lin, S.Z., Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy, Cell Transplant., 2015, vol. 24, pp. 339–4.CrossRefPubMedGoogle Scholar
  14. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, Dj., and Horwitz, E., Minimal criteria for defining multipotent mesenchymal stromal cells, the international society for cellular therapy position statement, Cytotherapy, 2006, vol. 8, pp. 315–4.CrossRefPubMedGoogle Scholar
  15. Estrada, J.C., Torres, Y., Benguría, A., Dopazo, A., Roche, E., Carrera-Quintanar, L., Pérez, R.A., Enríquez, J.A., Torres, R., Ramírez, J.C., Samper, E., and Bernad, A., Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy, Cell Death Dis., 2013, vol. 4, pp. e691. doi: 10.1038/cddis.2013.211PubMedCentralCrossRefPubMedGoogle Scholar
  16. Frith, J.E., Thomson, B., and Genever, P.G., Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential, Tissue Eng. (C) Methods., 2010, vol. 16, pp. 735–4.CrossRefGoogle Scholar
  17. Fu, X., Chen, Y., Xie, F.N., Dong, P., Liu, W.B., Cao, Y., Zhang, W.J., and Xiao, R., Comparison of immunological characteristics of mesenchymal stem cells derived from human embryonic stem cells and bone marrow, Tissue Eng (A), 2015, vol. 21, pp. 616–4.CrossRefGoogle Scholar
  18. Fukushima, H., Kawanabe, N., Murata, S., Ishihara, Y., Yanagita, T., Balam, T.A., and Yamashiro, T., SSEA-4 is a marker of human deciduous periodontal ligament stem cells, J. Dent. Res., 2012, vol. 91, pp. 955–4.CrossRefPubMedGoogle Scholar
  19. Gadkari, R., Zhao, L, Teklemariam, T., and Hantash, B.M., Human embryonic stem cell derived-mesenchymal stem cells: an alternative mesenchymal stem cell source for regenerative medicine therapy, Regen. Med., 2014, vol. 9, pp. 453–4.CrossRefPubMedGoogle Scholar
  20. Gang, E.J., Bosnakovski, D., Figueiredo, C.A., Visser, J.W., and Perlingeiro, R.C., SSEA-4 identifies mesenchymal stem cells from bone marrow, Blood, 2007, vol. 109, pp. 1743–4.CrossRefPubMedGoogle Scholar
  21. Ge, J., Cai, H., and Tan, W.S., Chromosomal stability during ex vivo expansion of UCB CD34(+) Cells, Cell Prolif., 2011, vol. 44, pp. 550–4.CrossRefPubMedGoogle Scholar
  22. Ge, S., Mrozik, K.M., Menicanin, D., Gronthos, S., and Bartold, P.M., Isolation and characterization of mesenchymal stem cell-like cells from healthy and inflamed gingival tissue: potential use for clinical therapy, Regen. Med., 2012, vol. 7, pp. 819–4.CrossRefPubMedGoogle Scholar
  23. Gordeeva, O.F. and Mitalipov, Sh.M., Pluripotent stem cells: maintenance of genetic and epigenetic stability and prospects of cell technologies, Russ. J. Dev. Biol., 2008, vol. 39, no. 6 pp. 325–5.CrossRefGoogle Scholar
  24. Gruenloh, W., Kambal, A., Sondergaard, C., McGee, J., Nacey, C., Kalomoiris, S., Pepper, K., Olson, S., Fierro, F., and Nolta, J.A., Characterization and in vivo testing of mesenchymal stem cells derived from human embryonic stem cells, Tissue Eng. (A), 2011, vol. 17, pp. 1517–4.CrossRefGoogle Scholar
  25. Hematti, P., Human embryonic stem cell-derived mesenchymal progenitors: an overview, Methods Mol. Biol., 2011, vol. 690, pp. 163–4.CrossRefPubMedGoogle Scholar
  26. Huang, H.I., Chen, S.K., Ling, Q.D., Chien, C.C., Liu, H.T., and Chan, S.H., Multilineage differentiation potential of fibroblast-like stromal cells derived from human skin, Tissue Eng. (A), 2010, vol. 16, pp. 1491–4.CrossRefGoogle Scholar
  27. Kita, K., Gauglitz, G.G., Phan, T.T., Herndon, D.N., and Jeschke, M.G., Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane, Stem Cells Dev., 2010, vol. 19, pp. 491–4.CrossRefPubMedGoogle Scholar
  28. Koltsova, A.M., Gordeeva, O.F., Krylova, T.A., Lifantseva, N.V., Musorina, A.S., Yakovleva, T.K., and Poljanskaya, G.G., Comparative characteristics of new human embryonic stem cell lines SC5, SC6, SC7, and SC3a, Russ. J. Dev. Biol., 2011, vol. 42, no. 4 pp. 212–5.CrossRefGoogle Scholar
  29. Krylova, T.A., Koltsova, A.M., Zenin, V.V, Musorina, A.S., Yakovleva, T.K., and Poljanskaya, G.G., Comparative characteristics of new lines of mesenchymal stem cells derived from human embryonic stem cells, bone marrow, and foreskin, Cell Tissue Biol., 2012, vol. 6, no. 2 pp. 5–5.Google Scholar
  30. Krylova, T.A., Musorina, A.S., Zenin, V.V., Yakovleva, T.K., and Poljanskaya, G.G., A comparative analysis of mesenchymal stem-cell lines derived from bone marrow and limb muscle of early human embryos, Cell Tissue Biol., 2014, vol. 8, no. 6 pp. 441–5.CrossRefGoogle Scholar
  31. Krylova, T.A., Musorina, A.S., Zenin, V.V., and Poljanskaya, G.G., Characteristic of the cellular spheroids, derived from mesenchymal stem cell lines from bone marrow and muscle of limb of early human embryo. Tsitologiia, 2015, vol. 9, no. 7 pp. 480–5.Google Scholar
  32. Lee, E.J., Lee, H.N., Kang, H.J., Kim, K.H., Hur, J., Cho, H.J., Lee, J., Chung, H.M., Cho, J., Cho, M.Y., Oh, S.K., Moon, S.Y., Park, Y.B., and Kim, H.S., Novel embryoid body-based method to derive mesenchymal stem cells from human embryonic stem cells, Tissue Eng. (A), 2010, vol. 16, pp. 705–4.CrossRefGoogle Scholar
  33. Leyva-Leyva, M., Barrera, L., López-Camarillo, C., Arriaga-Pizano, L., Orozco-Hoyuela, G., CarrilloCasas, E.M., Calderón-Pérez, J., López-Díaz, A., Hernandez-Aguilar, F., González-Ramírez, R., Kawa, S., Chimal-Monroy, J., and Fuentes-Mera, L., Characterization of mesenchymal stem cell subpopulations from human amniotic membrane with dissimilar osteoblastic potential, Stem Cells Dev., 2013, vol. 22, pp. 1275–4.CrossRefPubMedGoogle Scholar
  34. Li, O., Tormin, A., Sundberg, B., Hyllner, J., Le, Blanc, K., and Scheding, S., Human embryonic stem cell-derived mesenchymal stroma cells (hES-MSCs) engraft in vivo and support hematopoiesis without suppressing immune function: implications for off-the shelf ES-MSC therapies, PLoS One, 2013, vol. 8, pp. e55319.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Li, Y., Guo, G., Li, L., Chen, F., Bao, J., Shi, Y.J., and Bu, H., Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance, Cell Tiss. Res., 2015, vol. 360, pp. 297–4.CrossRefGoogle Scholar
  36. Lian, Q., Lye, E., Suan, Yeo, K., Khia, Way, Tan, E., SaltoTellez, M., Liu, TM., Palanisamy, N., El, Oakley, R.M., Lee, E.H., Lim, B., and Lim, S.K., Derivation of clinically compliant MSCs from CD105+, CD24differentiated human ESCs, Stem Cells, 2007, vol. 25, pp. 425–4.CrossRefPubMedGoogle Scholar
  37. Lin, W., Oh, S.K., Choo, A.B., and George, A.J., Activated T cells modulate immunosuppression by embryonic-and bone marrow-derived mesenchymal stromal cells through a feedback mechanism, Cytotherapy, 2012, vol. 14, pp. 274–4.CrossRefPubMedGoogle Scholar
  38. Maleki, M., Ghanbarvand, F., Reza, Behvarz, M., Ejtemaei, M., and Ghadirkhomi, E., Comparison of mesenchymal stem cell markers in multiple human adult stem cells, Int. J. Stem Cells., 2014, vol. 7, pp. 118–4.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Mamidi, M.K., Pal, R., Mori, N.A., Arumugam, G., Thrichelvam, S.T., Noor, P.J., Abdullah, H.M., Gupta, P.K., Das, A.K., Zakaria, Z., and Bhonde, R., Coculture of mesenchymal-like stromal cells derived from human foreskin permits long term propagation and differentiation of human embryonic stem cells, J. Cell Biochem., 2011, vol. 112, pp. 1353–4.CrossRefPubMedGoogle Scholar
  40. Meisner, L.F. and Johnson, J.A., Protocols for cytogenetics studies of human embryînic stem cells, Methods, 2008, vol. 45, pp. 133–4.CrossRefPubMedGoogle Scholar
  41. Mihu, C.M, Rus, Ciuc, D., Soritu, O., Suman, S., and Mihu, D., Isolation and characterization of mesenchymal stem cells from the amniotic membrane, Rom. J. Morphol. Embryol., 2009, vol. 50, pp. 73–4.PubMedGoogle Scholar
  42. Olivier, E.N. and Bouhassira, E.E., Differentiation of human embryonic stem cells into mesenchymal stem cells by the “raclure” method, Methods Mol. Biol., 2011, vol. 690, pp. 183–4.CrossRefPubMedGoogle Scholar
  43. Ono, M., Kajitani, T., Uchida, H., Arase, T., Oda, H., Nishikawa-Uchida, S., Masuda, H, Nagashima, T., Yoshimura, Y, and Maruyama, T., OCT4 expression in human uterine myometrial stem/progenitor cells, Hum Reprod., 2010, vol. 25, pp. 2059–4.CrossRefPubMedGoogle Scholar
  44. Ozkinay, C. and Mitelman, F., A simple trypsin–Giemsa technique producing simultaneous Gand C-banding in human chromosomes, Hereditas, 1979, vol. 90, pp. 1–4.CrossRefPubMedGoogle Scholar
  45. Peterson, S.E. and Loring, J.F., Genomic instability in pluripotent stem cells: implications for clinical applications, J. Biol. Chem., 2014, vol. 289, pp. 4578–4.Google Scholar
  46. Phinney, D.G., Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy, Cell Cycle, 2007, vol. 6, pp. 2884–4.CrossRefPubMedGoogle Scholar
  47. Poljanskaya, G.G., The problem of genomic instability of cultivated human stem cells. Tsitologiia, 2014, vol. 56, no. 10 pp. 697–5.Google Scholar
  48. Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L., and Verfaillie, C.M., Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells, Blood, 2001, vol. 98, pp. 2615–4.CrossRefPubMedGoogle Scholar
  49. Riekstina, U., Cakstina, I., Parfejevs, V., Hoogduijn, M., Jankovskis, G., Muiznieks, I., Muceniece, R., and Ancans, J., Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis, Stem Cell Rev., 2009, vol. 5, pp. 378–4.CrossRefPubMedGoogle Scholar
  50. Roubelakis, M.G, Pappa, K.I., Bitsika, V., Zagoura, D., Vlahou, A., Papadaki, H.A., Antsaklis, A., and Anagnou,.P., Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells, Stem Cells Dev., 2007, vol. 16, pp. 931–4.CrossRefPubMedGoogle Scholar
  51. Sedova, G.P., Quantitative aspects of malignant body height. Mathematical morphology, Electronic Math. Medicobiol. J., 2008, vol. 7, no. 2. http://www.smolensk.ru/user/sgma/mmorph/n-18-html/cont.htmGoogle Scholar
  52. Sensebé, L., Krampera, M., Schrezenmeier, H., Bourin, P., and Giordano, R., Mesenchymal stem cells for clinical application, Vox Sang, 2010, vol. 98, pp. 93–4.CrossRefPubMedGoogle Scholar
  53. Shih, D.T., Lee, D.C., Chen, S.C., Tsai, R.Y., Huang, C.T., Tsai, C.C., Shen, E.Y., and Chiu, W.T., Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue, Stem Cells, 2005, vol. 23, pp. 1012–4.CrossRefPubMedGoogle Scholar
  54. Silva, S.S., Rowntree, R.K., Mekhoubad, S., and Lee, J.T., X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 4820–4.PubMedCentralCrossRefPubMedGoogle Scholar
  55. Tan, Z., Su, Z.Y., Wu, R.R., Gu, B., Liu, Y.K., Zhao, X.L., and Zhang, M., Immunomodulative effects of mesenchymal stem cells derived from human embryonic stem cells in vivo and in vitro, J. Zhejiang. Univ. Sci., 2011, vol. B 12, pp. 18–27.CrossRefGoogle Scholar
  56. Tarte, K., Gaillard, J., Lataillade, J.J., Fouillard, L., Becker, M., Mossafa, H., Tchirkov, A., Rouard, H., Henry, C., Splingard, M., Dulong, J., Monnier, D., Gourmelon, P., Gorin, N.C., and Sensebé, L., on behalf of Société Française de Greffe de Moelle et Thérapie Cellulaire. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation, Blood, 2010, vol. 115, pp. 1549–4.CrossRefPubMedGoogle Scholar
  57. Trivedi, P. and Hematti, P., Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells, Exp. Hematol., 2008, vol. 36, pp. 350–4.PubMedCentralPubMedGoogle Scholar
  58. Trubiani, O., Zalzal, S.F., Paganelli, R., Marchisio, M., Giancola, R., Pizzicannella, J., Bühring, H.J., Piattelli, M., Caputi, S., and Nanci, A., Expression profile of the embryonic markers Nanog, OCT-4, SSEA-1, SSEA-4, and Frizzled-9 receptor in human periodontal ligament mesenchymal stem cells, J. Cell Physiol., 2010, vol. 225, pp. 123–4.CrossRefPubMedGoogle Scholar
  59. Varela, C., Denis, J.A., Polentes, J., Feyeux, M., Aubert, S., Champon, B., Piétu, G., Peschanski, M., and Lefort, N., Recurrent genomic instability of chromosome 1q in neural derivatives of human embryonic stem cells, J. Clin. Invest., 2012, vol. 122, pp. 569–4.PubMedCentralCrossRefPubMedGoogle Scholar
  60. Varga, N., Veréb, Z., Rajnavölgyi, E., Német, K., Uher, F., Sarkadi, B., and Apáti, A., Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth, Biochem. Biophys. Res. Commun., 2011, vol. 414, pp. 474–4.CrossRefPubMedGoogle Scholar
  61. Wang, Y., Zhang, Z., Chi, Y., Zhang, Q., Xu, F., Yang, Z., Meng, L., Yang, S., Yan, S., Mao, A., Zhang, J., Yang, Y., Wang, S., Cui, J., Liang, L., Ji, Y., Han, Z.B., Fang, X., and Han, Z.C., Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation, Cell Death Dis., 2013, vol. 4, pp. e950.PubMedCentralCrossRefPubMedGoogle Scholar
  62. Wegmeyer H., Bröske, A.M., Leddin, M., Kuentzer, K., Nisslbeck, A.K., Hupfeld, J., Wiechmann, K., Kuhlen, J., von Schwerin, C., Stein, C., Knothe, S., Funk, J., Huss, R., and Neubauer, M., Mesenchymal stromal cell characteristics vary depending on their origin, Stem Cells Dev., 2013, vol. 22, pp. 2606–4.PubMedCentralCrossRefPubMedGoogle Scholar
  63. Wu, R., Gu, B., Zhao, X., Tan, Z., Chen, L., Zhu, J., and Zhang, M., Derivation of multipotent nestin(+)/CD271 (–)/STRO-1 (–) mesenchymal-like precursors from human embryonic stem cells in chemically defined conditions, Hum. Cell, 2013, vol. 26, pp. 19–4.CrossRefPubMedGoogle Scholar
  64. Yan, Z.J., Hu, Y.Q., Zhang, H.T., Zhang, P., Xiao, Z.Y., Sun, X.L., Cai, Y.Q., Hu, C.C., and Xu, R.X., Comparison of the neural differentiation potential of human mesenchymal stem cells from amniotic fluid and adult bone marrow, Cell Mol. Neurobiol., 2013, vol. 33, pp. 465–4.CrossRefPubMedGoogle Scholar
  65. Yen, B.L., Huang, H.I., Chien, C.C., Jui, H.Y., Ko, B.S., Yao, M, Shun, C.T., Yen, M.L., Lee, M.C., and Chen, Y.C., Isolation of multipotent cells from human term placenta, Stem Cells, 2005, vol. 23, pp. 3–4.CrossRefPubMedGoogle Scholar
  66. Yen, M.L., Hou, C.H., Peng, K.Y., Tseng, P.C., Jiang, S.S., Shun, C.T., Chen, Y.C., and Kuo, M.L., Efficient derivation and concise gene expression profiling of human embryonic stem cell-derived mesenchymal progenitors (EMPs), Cell Transplant., 2011, vol. 20, pp. 1529–4.CrossRefPubMedGoogle Scholar
  67. Zhang, H., Zhang, B., Tao, Y., Cheng, M., Hu, J., Xu, M., and Chen, H., Isolation and characterization of mesenchymal stem cells from whole human umbilical cord applying a single enzyme approach, Cell Biochem. Funct., 2012, vol. 30, pp. 643–4.CrossRefPubMedGoogle Scholar
  68. Zucchelli, M., Ström, S., Holm, F., Malmgren, H., Sahlén, S., Religa, P., Hovatta, O., Kere, J., and Inzunza, J., In vivo differentiated human embryonic stem cells can acquire chromosomal aberrations more frequently than in vitro during the same period, Stem Cells Dev., 2012, vol. 21, pp. 3363–4.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. M. Koltsova
    • 1
  • V. V. Zenin
    • 1
  • T. K. Yakovleva
    • 1
  • G. G. Poljanskaya
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations