Cell and Tissue Biology

, Volume 9, Issue 4, pp 261–264 | Cite as

DNA methylation level and telomere length as a basis for modeling of the biological aging clock

  • A. L. Runov
  • M. S. Vonsky
  • V. M. Mikhelson


Aging is a process defined by a variety of both external and internal factors. A person’s biological age determines the extent of bodily deterioration and risk of age-related diseases. Various parameters, including average telomere length and level of DNA methylation, are considered indicators of biological age. We proposed to combine these parameters to create a model suitable to assess human biological age. Application of qPCR for determination of telomere length and MS-HRM for methylation analysis will help to determine parameters of interest quickly and requires a limited set of equipment.


aging biological clock DNA methylation telomere 



polymerase chain reaction


real-time PCR


high-resolution DNA melting


matrix-assisted laser desorption/ionization time-of-flight mass spectrometry


methylation sensitive high-resolution melting


next-generation sequencing


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allshire, R.C., Dempster, M., and Hastie, N.D., Human telomeres contain at least three types of G-rich repeat distributed non-randomly, Nucleic Acids Res., 1989, vol. 17, pp. 4611–4627.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Allsop, R.C., Vaziri, H., Patterson, C., Goldstein, S., Younglay, E.V., Futcher, A.B., Greider, C.W., and Harley, C.B., Telomere length predicts replicative capacity of human fibroblasts, Proc. Nat. Acad. Sci. USA, 1992, vol. 89, pp. 10114–10118.CrossRefGoogle Scholar
  3. Bibault, J., Cambier, N., Lemahieu, J-M., Quesnel, B., Auffret, M., and Rose, C., Acute myocarditis induced by hypomethylating agents, J. Clin. Onc., 2011, vol. 33, pp. 4656–4657.Google Scholar
  4. Blackburn, E.H., Telomere states and cell fates, Nature, 2000, vol. 408, pp. 53–56.PubMedCrossRefGoogle Scholar
  5. Buxton, J.L., Suderman, M., Pappas, J.J., Borghol, N., McArdle, W., Blakemore, A.I., Hertzman, C., Power, C., Szyf, M., and Pembrey, M., Human leukocyte telomere length is associated with DNA methylation levels in multiple subtelomeric and imprinted loci, Sci. Rep., 2014, vol. 4, p. 4954. DOI: 10.1038/srep04954PubMedCentralPubMedCrossRefGoogle Scholar
  6. Cawthon, R.M., Telomere measurement by quantitative PCR, Nucl. Acids Res., 2002, vol. 30, p. e47. DOI: 10.1093/nar/30.10.e47PubMedCentralPubMedCrossRefGoogle Scholar
  7. Clark, S.J., Harrison, J., Paul, C.L., and Frommer, M., High sensitivity mapping of methylated cytosines, Nucleic Acids Res., 1994, vol. 22, pp. 2990–2997.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Ehrlich, M., Gama-Sosa, M.A., Huang, L.H., Midgett, R.M., Kuo, K.C., McCune, R.A., and Gehrke, C., Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells, Nucleic Acids Res., 1982, vol. 10, pp. 2709–2721.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Fontana, L., Partridge, L., and Longo, V.D., Extending healthy life span—from yeast to humans, Science, 2010, vol. 328, pp. 321–326.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Herbig, U., Ferreira, M., Condel, L., Carey, D., and Sedivy, J.M., Cellular senescence in aging primates, Science, 2006, vol. 311, pp. 1257.Google Scholar
  11. Horvath, S., DNA methylation age of human tissues and cell types, Genome Biol., 2013, vol. 14, p. R115. DOI: 10.1186/gb-2013-14-10-r115PubMedCentralPubMedCrossRefGoogle Scholar
  12. Johnson, A.A., Akman, K., Calimport, S.R.G., Wuttke, D., Stolzing, A., and de Magalhães, J.P., The role of DNA methylation in aging, rejuvenation, and agerelated disease, Rejuvenation Res., 2012, vol. 15, pp. 483–494.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Liew, M., Pryor, R., Palais, R., Meadows, C., Erali, M., Lyon, E., and Wittwer, C., Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons, Clin. Chem., 2004, vol. 50, pp. 1156–1164.PubMedCrossRefGoogle Scholar
  14. Mikhelson, V.M. and Gamaley, I.A., Telomere shortening is a sole mechanism of aging, Open Longevity J., 2008, vol. 2, pp. 23–28.CrossRefGoogle Scholar
  15. Newgard C.B. and Sharpless, N.E., Coming of age: molecular drivers of aging and therapeutic opportunities, J. Clin. Invest., 2013, vol. 123, pp. 946–950.PubMedCentralPubMedCrossRefGoogle Scholar
  16. O’Callaghan, N.J., Dhillon, V.S., Thomas, P., and Fenech, M., A quantitative real-time PCR method for absolute telomere length, Biotechniques, 2008, vol. 44, pp. 807–809.PubMedCrossRefGoogle Scholar
  17. Olovnikov, A.M., A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon, J. Theor. Biol., 1973, vol. 4, pp. 181–190.CrossRefGoogle Scholar
  18. Puterman, E., Lin, J., Blackburn, E., O’Donovan, A., Adler, N., and Epel, E., The power of exercise: buffering the effect of chronic stress on telomere length, Public Library Sci., 2010, vol. 5, p. e10837. DOI: 10.1371/journal.pone.0010837Google Scholar
  19. Salmon, A.B., Richardson, A., and Pérez, V.I., Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging?, Free Rad. Biol. Med., 2010, vol. 48, pp. 642–655.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Stadler, G., Rahimov, F., King, O.D., Chen, J.C.J., Robin, J.D., Wagner, K.R., Shay, J.W., Emerson, C.P., Jr., and Wright, W.E., Telomere position effect regulates DUX4 in human facioscapulohumeral muscular dystrophy, Nature Struct. Mol. Biol., 2013, vol. 20, pp. 671–678.CrossRefGoogle Scholar
  21. Shen, L. and Waterland, R.A., Methods of DNA methylation analysis, Curr. Opin. Clin. Nutr.Metab. Care., 2007, vol. 10, pp. 576–581.PubMedCrossRefGoogle Scholar
  22. Smirnova, T.Yu., Runov, A.L., Vonsky, M.S., Spivak, D.L., Zakharchuk, A.G., Mikhelson, V.M., and Spivak, I.M., Telomere length in a population of long-lived people of the northwestern region of Russia, Tsitologiia, 2012, vol. 54, no. 5, pp. 439–445.PubMedGoogle Scholar
  23. Walsh, C.P. and Xu, G.L., Cytosine methylation and DNA repair, Curr. Top Microbiol. Immunol., 2006, vol. 301, pp. 283–315.PubMedGoogle Scholar
  24. Weidner, C.I., Lin, Q., Koch, C.M., Eisele, L., Beier, F., Ziegler, P., Bauerschlag, D.O., Jöckel, K.H., Erbel, R., Mühleisen, T.W., Zenke, M., Brümmendorf, T.H., and Wagner, W., Aging of blood can be tracked by DNA methylation changes at just three CpG sites, Gen. Biol., 2014, vol. 15, p. R24. DOI: 10.1186/gb-2014-15-2-r24CrossRefGoogle Scholar
  25. Wojdacz, T.K. and Dobrovic, A., Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation, Nucleic Acids Res., 2007, vol. 35, p. e41. DOI: 10.1093/nar/gkm013PubMedCentralPubMedCrossRefGoogle Scholar
  26. Yang, A.S., Doshi, K.D., Choi, S.W., Mason, J.B., Mannari, R.K., Gharybian, V., Luna, R., Rashid, A., Shen, L., Estecio, M.R., Kantarjian, H.M., Garcia-Manero, G., and Issa, J.P., DNA methylation changes after 5-aza-20-deoxycytidine therapy in patients with leukemia, Cancer Res., 2006, vol. 66, pp. 5495–5503.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. L. Runov
    • 1
    • 2
  • M. S. Vonsky
    • 1
    • 2
  • V. M. Mikhelson
    • 1
  1. 1.Institure of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Mendeleev Institute of MetrologySt. PetersburgRussia

Personalised recommendations