Skip to main content
Log in

Tandem repeats in the rodent genome and their mapping

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Tandemly repeated sequences are unique to eukaryotes and make up tens of percent of the higher eukaryote genome. However, the evolution of this class of sequences is poorly studied. In our paper, 62 families of Mus musculus tandem repeats are analyzed by bioinformatic methods, while 7 of them are analyzed by fluorescence in situ hybridization. It is shown that the same tandem repeat sets occur together only in closely related species of mice. However, even in such species, we observe differences in localization on chromosomes and the number of individual tandem repeats. With increasing evolutionary distance, only some of the tandem repeat families remain common for different species. It is shown that the use of a combination of bioinformatics and molecular biology techniques is very promising for further studies of tandem repeat evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

periCEN:

pericentromeric region of chromosomes

satDNA:

satellite DNA

bp:

base pair

TR:

tandem repeats

CEN:

centromeric region of chromosomes

SRA:

sequence read archive

WGS:

whole genome shotgun

References

  • Arneson, N., Hughes, S., Houlston, R., and Done, S., Whole-genome amplification by degenerate oligonucleotide primed PCR (DOP-PCR), Cold Spring Harbor Protocol, 2008.

    Google Scholar 

  • Benson, G., Tandem repeats finder: a program to analyze DNA sequence, Nucleic Acids Res., 1999, vol. 27, pp. 573–580.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chevret, P., Veyrunes, F., and Britton-Davidian, J., Molecular phylogeny of the genus Mus (Rodentia: Murinae) based on mitochondrial and nuclear data, Biol. J. Linnean Soc., 2005, vol. 84, pp. 417–427.

    Article  Google Scholar 

  • Enukashvily, N., Donev, R., Sheer, D., and Podgornaya, O., Satellite DNA binding and cellular localisation of RNA helicase P68, J. Cell Sci., 2005, vol. 118, pp. 611–622.

    Article  CAS  PubMed  Google Scholar 

  • Fry, K. and Salser, W., Nucleotide sequences of HS-a satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents, Cell, 1977, vol. 12, pp. 1069–1084.

    Article  CAS  PubMed  Google Scholar 

  • Garagna, S., Marziliano, N., Zuccotti, M., Searle, J.B., Capanna, E., and Redi, C.A., Pericentromeric organization at the fusion point of mouse robertsonian translocation chromosomes, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 171–175.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalitsis, P., Griffiths, B., and Choo, K.H., Mouse telocentric sequences reveal a high rate of homogenization and possible role in Robertsonian translocation, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 8786–8791.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kipling, D., Mitchell, A.R., Masumoto, H., Wilson, H.E., Nicol, L., and Cooke, H.J., CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli, Mol. Cell. Biol., 1995, vol. 15, pp. 4009–4020.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kit, S., Equilibrium sedimentation in density gradients of DNA preparations from animal tissues, J. Mol. Biol., 1961, vol. 3, pp. 711–716.

    Article  CAS  PubMed  Google Scholar 

  • Komissarov, A.S., Gavrilova, E.V., Demin, S.J., Ishov, A.M., and Podgornaya, O.I., Tandemly repeated DNA families in the mouse genome, BMC Genom., 2011, vol. 12, p. 531.

    Article  CAS  Google Scholar 

  • Kuznetsova, I., Podgornaya, O., and FergusonSmith, M.A., High-resolution organization of mouse centromeric and pericentromeric DNA, Cytogenet. Genome Res., 2006, vol. 112, pp. 248–255.

    Article  CAS  Google Scholar 

  • Langmead, B. and Salzberg, S., Fast gapped-read alignment with Bowtie 2, Nature Methods, 2012, vol. 9, pp. 357–359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lobov, I.B., Tsutsui, K., Mitchell, A.R., and Podgornaya, O.I., Specificity of SAF-A and lamin B binding in vitro correlates with the satellite DNA bending state, J. Cell. Biochem., 2001, vol. 83, pp. 218–229.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y.H., Takahashi, A., Kitano, T., Koide, T., Shiroishi, T., Moriwaki, K., and Saitou, N., Mosaic genealogy of the Mus musculus genome revealed by 21 nuclear genes from its three subspecies, Genes Genetic Systems, 2008, vol. 83, pp. 77–88.

    Article  CAS  PubMed  Google Scholar 

  • Macgregor, H.C. and Varley, J.M., Working with Animal Chromosomes, Chichester: Wiley, 1983.

    Google Scholar 

  • Macholán, M., Vyskocilová, M., Bonhomme, F., Krystufek, B., Orth, A., and Vohralík, V., Genetic variation and phylogeography of free-living mouse species (genus Mus) in the Balkans and the Middle East, Mol. Ecol., 2007, vol. 16, pp. 4774–4788.

    Article  PubMed  Google Scholar 

  • Melters, D.P., Bradnam, K.R., Young, H.A., Telis, N., May, M.R., Ruby, J.G., Sebra, R., Peluso, P., Eid, J., Rank, D., Fernando, Garcia,J., Derisi, J.L., Smith, T., Tobias, C., Ross-Ibarra, J., Korf, I., and Chan, S.W., Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution, Genome Biol., 2013, vol. 14, p. R10.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mestrovi, N., Plohl, M., Mravinac, B., and Ugarkovi, D., Evolution of satellite DNAs from the genus Palorus—experimental evidence for the “library” hypothesis, Mol. Biol. Evol., 1998, vol. 5, pp. 1062–1068.

    Article  Google Scholar 

  • Mravinac, B. and Plohl, M., Satellite DNA junctions identify the potential origin of new repetitive elements in the beetle Tribolium madens, Gene, 2007, vol. 394, pp. 45–52.

    Article  CAS  PubMed  Google Scholar 

  • Palomeque, T., Muñoz-López, M., Carrillo, J.A., and Lorite, P., Characterization and evolutionary dynamics of a complex family of satellite DNA in the leaf beetle Chrysolina carnifex (Coleoptera, Chrysomelidae), Chromosome Res., 2005, vol. 13, pp. 795–807.

    Article  CAS  PubMed  Google Scholar 

  • Podgornaya, O.I., Voronin, A.P., Enukashvily, N.I., Matveev, I.V., and Lobov, I.B., Structure-specific DNA-binding proteins as the foundation for three-dimensional chromatin organization, Int. Rev. Cytol., 2003, vol. 224, pp. 227–296.

    CAS  PubMed  Google Scholar 

  • Podgornaya, O. I., Ostromishensky, D.I., Kuznetsova, I. S., Matveev, I.V., and Komissarov, A.S., Heterochromatin and centromere structure paradox, Tsitologiia, 2009, vol. 51, no. 3, pp. 204–211.

    Google Scholar 

  • Siracusa, L.D., Chapman, V.M., Bennett, K.L., Hastie, N.D., Pietras, D.F., and Rossant, J., Use of repetitive DNA sequences to distinguish Mus musculus and Mus caroli cells by in situ hybridization, J. Embryol. Exp. Morphol., 1983, vol. 73, pp. 163–178.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Ostromyshenskii.

Additional information

Original Russian Text © D.I. Ostromyshenskii, I.S. Kuznetsova, A.S. Komissarov, I.V. Kartavtseva, O.I. Podgornaya, 2015, published in Tsitologiya, 2015, Vol. 57, No. 2, pp. 102–110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostromyshenskii, D.I., Kuznetsova, I.S., Komissarov, A.S. et al. Tandem repeats in the rodent genome and their mapping. Cell Tiss. Biol. 9, 217–225 (2015). https://doi.org/10.1134/S1990519X15030116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X15030116

Keywords

Navigation