Skip to main content
Log in

Dynamics of proglycogen and macroglycogen in hepatocytes of normal and cirrhotic rat liver at various stages of glycogenesis

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The content and structure of glycogen in hepatocytes of normal and cirrhotic rat liver were examined at different time intervals after glucose administration to starving animals. We used an original cytofluorimetric method for detection and quantification of proglycogen (PG) and macroglycogen (MG) of isolated hepatocytes. The method is based on the use of reagents of the Schiff type with different spectral characteristics. The content of MG in hepatocytes of control rats was increased by 52% (p < 0.01) as early as after 10 min. The MG content in the cirrhotic liver cells was increased by 43% (p < 0.05) only 20 min after glucose administration to the starving animals. The correlation coefficient between MG content and the total glycogen content at various stages of glycogenesis in rats of both groups was from 0.90 to 0.99 (p < 0.001). Increase in the PG content in hepatocytes of control rats was observed in intervals of 10–30 and 45–75 min. The PG content in cirrhosis was increased only in 60 min after the beginning of glycogenesis, but in 120 min it was 1.5 times higher than the control values (p < 0.001). The correlation coefficients between PG and the total glycogen content in the cells were on average 0.86 (p < 0.001) and 0.77 (p < 0.001) in the control and experimental groups, respectively. Thus, the change in the total glycogen content in hepatocytes of normal and cirrhotic liver are associated mainly with changes in the MG level. The contribution of PG was most significant in normal liver at the beginning of glycogenesis (10–30 min); in cirrhotic liver, at later stages (75–120 min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MG:

macroglycogen

PG:

proglycogen

References

  • Alonso, M.D., Lomako, J., Lomako, W.M., and Whelan, W.J., A new look at the biogenesis of glycogen, FASEB J, 1995, vol. 9, pp. 1126–1137.

    CAS  PubMed  Google Scholar 

  • Bröjer, J., Proglycogen and macroglycogen in equine skeletal muscle, Doctoral Thesis Swedish University of Agricultural Sciences, Uppsala, 2006.

    Google Scholar 

  • Brodsky, V.Ya., Rhythm of protein synthesis, J. Theor. Biol., 1975, vol. 55, pp. 167–200.

    Article  Google Scholar 

  • Brodsky, V.Ya., Direct cell-cell communication: a new approach derived from recent data on the nature and self-organisation of ultradian (circahoralian) intracellular rhythms, Biol. Rev., 2006, vol. 81, pp. 143–162.

    Article  PubMed  Google Scholar 

  • Brodsky, V.Ya. and Nechaeva, N.V., Ritm sinteza belka (Rhythm of Protein Synthesis), Moscow: Nauka, 1988.

    Google Scholar 

  • Devos, P., Baudhuin, P., Van, Hoof, F., and Hers, H.G., The alpha-particulate liver glycogen, Biochem. J., 1983, vol. 209, pp. 159–165.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ferrer, J.C., Favre, C., Gomis, R.R., Fernández-Novell, J.M., Garcia-Rocha, M., de la Iglesia, N., Cid, E., and Guinovart, J.J., Control of glycogen deposition, FEBS Lett, 2003, vol. 546, pp. 127–132.

    Article  CAS  PubMed  Google Scholar 

  • Ganesh, S., Agarwala, K.L., Amano, K., Suzuki, T., Delgado-Escueta, A.V., and Yamakawa, K., Regional and developmental expression of epm2a gene and its evolutionary conservation, Biochem. Biophys. Res. Commun., 2001, vol. 283, pp. 1046–1053.

    Article  CAS  PubMed  Google Scholar 

  • Giardina, M.G., Matarazzo, M., and Sacca, L., Kinetic analysis of glycogen synthase and PDC in cirrhotic rat liver and skeletal muscle, Am. J. Physiol., 1994, vol. 267, pp. E900–E906.

    CAS  PubMed  Google Scholar 

  • Greenberg, C.C., Jurczak, M.J., Danos, A.M., and Brady, M.J., Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways, Am. J. Physiol. Endocrinol. Metab., 2006, vol. 291, pp. E1–E8.

    Article  CAS  PubMed  Google Scholar 

  • Judd, C., Lomako, J., Lomako, W.M., Ozdemir, Y., and Whelan, W.J., Proglycogen: an intermediate in glycogen synthesis, FASEB J,, 1992, vol. 6, pp. A1520.

    Google Scholar 

  • Jurczak, M.J., Danos, A.M., Rehrmann, V.R., and Brady, M.J., The role of protein translocation in the regulation of glycogen metabolism, Cell. Âiochem., 2008, vol. J 104, pp. 435–443.

    Article  Google Scholar 

  • Krahenbuhl, S., Weber, F.L.Jr, and Brass, E.P., Decreased hepatic glycogen content and accelerated response to starvation in rats with carbon tetrachloride-induced cirrhosis, Hepatology, 1991, vol. 14, pp. 1189–1195.

    CAS  PubMed  Google Scholar 

  • Kudryavtseva, M.V., Zavadskaya, E.E., Skorina, A.D., Smirnova, S.A., and Kudryavtsev, B.N., The method of obtaining isolated liver cells of material lifetime puncture biopsies, Lab. Delo, 1983, vol. 9, pp. 21–22.

    Google Scholar 

  • Kudryavtseva, M.V., Emelyanov, A.V., Sakuta, G.A., Skorina, A.D., Sleptsova, L.A., and Kudryavtsev, B.N., A cytofluorometric study of glycogen contents and its fractions in hepatocytes of patients with different causation of liver cirrhosis, Tsitologiya, 1992, vol. 34, no. 11–12, pp. 100–107.

    Google Scholar 

  • Kudryavtseva, M.V., Bezborodkina, N.N., Radchenko, V.G., Okovity, S.V., and Kudryavtsev, B.N., Metabolic het-erogeneity of glycogen hepatocytes of patients with liver cirrhosis, Eur. J. Gastroenterol. Hepatol., 2001, vol. 13, pp. 693–697.

    Article  CAS  PubMed  Google Scholar 

  • Kus, I., Colakoglu, N., Pekmez, H., Seckin, D., Ogeturk, M., and Sarsilmaz, M., Protective effects of caffeic acid phenethyl ester (CAPE) on carbon tetrachloride-induced hepatotoxicity in rats, Acta Histochem., 2004, vol. 106, pp. 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, D. and Rossi, E.L., Ultradian Rhythms in Life Processes: An Inquiry into Fundamental Principles of Chronobiology and Psychobiology, New York: Springer-Verlag, 1992.

    Book  Google Scholar 

  • Mayatepek, E., Hoffmann, B., and Meissner, T., Inborn errors of carbohydrate metabolism, Best Pract. Res. Clin. Gastroenterol., 2010, vol. 24, pp. 607–618.

    Article  CAS  PubMed  Google Scholar 

  • Melendez, R., Melendez-Hevia, E., and Canela, E.I., The fractal structure of glycogen: a clever solution to optimize cell metabolism, J. Biophys., 1999, vol. 77, pp. 1327–1332.

    Article  CAS  Google Scholar 

  • Petersen, K.F., Krssak, M., Navarro, V., Chandramouli, V., Hundal, R., Schumann, W.C., Landau, B.R., and Shulman, G.I., Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis, Am. J. Physiol., 1999, vol. 276, pp. E529–E535.

    CAS  PubMed  Google Scholar 

  • Planaguma, A., Claria, J., Miquel, R., Lopez-Parra, M., Titos, E., Masferrer, J.L., Arroyo, V., and Rodes, J., The selective cyclooxygenase-2 inhibitor SC-236 reduces liver fibrosis by mechanisms involving non-parenchymal cell apoptosis and PPARgamma activation, FASEB J., 2005, vol. 19, pp. 1120–1122.

    CAS  PubMed  Google Scholar 

  • Rozenfeld, E.L. and Popova, I.A., Vrozhdennye narusheniya obmena glikogena (Inborn Errors of Glycogen Metabolism), Moscow: Meditsina, 1989.

    Google Scholar 

  • Rybicka, K.K., Glycosomes-the organelles of glycogen metabolism, Tiss. Cell., 1996, vol. 28, pp. 253–265.

    Article  CAS  Google Scholar 

  • Schneiter, P., Gillet, M., Chiolero, R., Jequier, E., and Tappy, L., Hepatic nonoxidative disposal of an oral glucose meal in patients with liver cirrhosis, Metabolism, 1999, vol. 48, pp. 1260–1266.

    Article  CAS  PubMed  Google Scholar 

  • Shearer, J. and Graham, T.E., New perspectives on the storage and organization of muscle glycogen, Can. J. Appl. Physiol., 2002, vol. 27, pp. 179–203.

    Article  CAS  PubMed  Google Scholar 

  • Shearer, J., Wilson, R.J., Battram, D.S., Richter, E.A., Robinson, D.L., Bakovic, M., and Graham, T.E., Increases in glycogenin and glycogenin mRNA accompany glycogen resynthesis in human skeletal muscle, Am. J. Phisiol. Endocrinol. Metab., 2005, vol. 289, pp. E508–E514.

    Article  CAS  Google Scholar 

  • Sherlock, Sh. and Dooley, J., Liver and Biliary Tract Diseases, Moscow: GEOTAR-media, 2002.

    Google Scholar 

  • Sullivan, M.A., Vilaplana, F., Cave, R.A., Stapleton, D., Gray-Weale, A.A., and Gilbert, R.G., Nature of α and β particles in glycogen using molecular size distributions, Biomacromolecules, 2010, vol. 11, pp. 1094–1100.

    Article  CAS  PubMed  Google Scholar 

  • Tagliabracci, V.S., Turnbull, J., Wang, W., Girard, J.M., Zhao, X., Skurat, A.V., Delgado-Escueta, A.V., Minassian, B.A., Depaoli-Roach, A.A., and Roach, P.J., Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 19262–19266.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tagliabracci, V.S., Heiss, C., Karthik, C., Contreras, C.J., Glushka, J., Ishihara, M., Azadi, P., Hurley, T.D., DePaoli-Roach, A.A., and Roach, P.J., Phosphate incorporation during glycogen synthesis and lafora, Cell Metab., 2011, vol. 13, pp. 274–282.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson, R.J., Relating glycogenin protein levels and glycogen content post-contraction in human and rodent skeletal muscle, A Thesis for the Degree of Doctor of Philosophy, University of Guelph, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Chestnova.

Additional information

Original Russian Text © A.Yu. Chestnova, N.N. Bezborodkina, N.M. Matyukhina, B.N. Kudryavtsev, 2014, published in Tsitologiya, 2014, Vol. 56, No. 11, pp. 858–865.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chestnova, A.Y., Bezborodkina, N.N., Matyukhina, N.M. et al. Dynamics of proglycogen and macroglycogen in hepatocytes of normal and cirrhotic rat liver at various stages of glycogenesis. Cell Tiss. Biol. 9, 133–140 (2015). https://doi.org/10.1134/S1990519X15020030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X15020030

Keywords

Navigation